Math, asked by girlsfriend, 2 months ago

27.point O is the common end point of the rays OA , OB , OC , OD , and OE. Show that <AOB + <BOC + <COD + <DOE + <EOA =360°
please help me please ​

Answers

Answered by Anonymous
7

Step-by-step explanation:

 \huge{ \red  {\boxed{\bold {\green{Solution : }}}}}

See image

\large \underline \bold \blue{Have \: Given :- }

 \bold{point \: O  \:  is  \: the  \: common \:  end  \: point } \\  \bold{  of  \: the  \: rays \:  OA , OB , OC , OD , and OE}

\large \underline{ \bold{ \orange{To \:  prove :- }}}

\angle{AOB} + \angle{BOC} + \angle{COD} + \angle{DOE} + \angle{EOA} =360°

\large \underline{ \bold{ \purple{Composition :-}}}

Draw a ray OP opposite to ray OA.

∠AOB  , \angle{BOC} \: and \:  \angle COP\: \\  are \:  linear \:  pair \:  angles,

\therefore \: ∠AOB +∠BOC + ∠COP = 180° ----(1)

 Also, ∠AOE, ∠DOE  \: and \:  ∠DOP \\ are  \: linear  \: pair \:  angles,

 \therefore \: ∠AOE + ∠DOE + ∠DOP= 180° —–––(2) 

By adding equations, (1) and (2), we get,

∠AOB +∠BOC + ∠COP + AOE + ∠DOE + ∠DOP = 180° + 180°

 \angle{AOB} +  \angle{BOC} + ( \angle{COP} +  \angle{DOP}) +  \angle{AOE} +  \angle{DOE } = 360°

∠AOB + ∠BOC + ∠COD + ∠DOE + ∠AOE  = 360° </p><p>

Hence Proved.

I hope it is helpful

Attachments:
Answered by Anonymous
1

Answer:

2 answer send kiya hai dear

Similar questions