Math, asked by girlsfriend, 2 months ago

27. Point O is the common end point of the rays OA , OB , OC , OD , and OE. Show that <AOB +<BOC + <COD +<DOE + <EOA =360°​

Answers

Answered by Anonymous
12

Step-by-step explanation:

\huge{ \red {\boxed{\bold {\green{Solution : }}}}}

See image

\large \underline \bold \blue{Have \: Given :- }

 \bold{Rays  \: OA, OB, OC, OD and OE} \\   \bold{have  \: the  \: common  \: endpoint  \: O.}

\large \underline{ \bold{ \orange{To \: prove :- }}}

∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°

\large \underline{ \bold{ \purple{Composition :-}}}

Draw a ray OP opposite to ray OA.

 \bold{∠AOB , \angle{BOC} \: and \: \angle COP} \\  \bold{are \: linear \: pair \: angles,}

 ∴∠AOB+∠BOC+∠COP=180°−−−−(1)

 \bold{Also, ∠AOE, ∠DOE \: and \: ∠DOP} \\  \bold{are \: linear \: pair \: angles,}

∴∠AOE+∠DOE+∠DOP=180° —–––(2) </p><p>

By adding equations, (1) and (2), we get,

∠AOB +∠BOC + ∠COP + AOE + ∠DOE + ∠DOP = 180° + 180°

∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°

∠AOB + ∠BOC + ∠COD + ∠DOE + ∠AOE = 360°

 \large{ \bold{ \pink{Hence \:  Proved.}}}

I hope it is helpful

Answered by FFdevansh
3

Step-by-step explanation:

RaysOA,OB,OC,ODandOE

havethecommonendpointO.

\large \underline{ \bold{ \orange{To \: prove :- }}}

Toprove:−

∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°

\large \underline{ \bold{ \purple{Composition :-}}}

Composition:−

Draw a ray OP opposite to ray OA.

\begin{gathered} \bold{∠AOB , \angle{BOC} \: and \: \angle COP} \\ \bold{are \: linear \: pair \: angles,}\end{gathered}

∠AOB,∠BOCand∠COP

arelinearpairangles,

∴∠AOB+∠BOC+∠COP=180°−−−−(1)∴∠AOB+∠BOC+∠COP=180°−−−−(1)

\begin{gathered} \bold{Also, ∠AOE, ∠DOE \: and \: ∠DOP} \\ \bold{are \: linear \: pair \: angles,}\end{gathered}

Also,∠AOE,∠DOEand∠DOP

arelinearpairangles,

∴∠AOE+∠DOE+∠DOP=180° —–––(2) < /p > < p >∴∠AOE+∠DOE+∠DOP=180°—–––(2)</p><p>

By adding equations, (1) and (2), we get,

∠AOB +∠BOC + ∠COP + AOE + ∠DOE + ∠DOP = 180° + 180°∠AOB+∠BOC+∠COP+AOE+∠DOE+∠DOP=180°+180°

∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°

∠AOB + ∠BOC + ∠COD + ∠DOE + ∠AOE = 360°∠AOB+∠BOC+∠COD+∠DOE+∠AOE=360°

I'm giving my intro

Similar questions