27. Point O is the common end point of the rays OA , OB , OC , OD , and OE. Show that <AOB +<BOC + <COD +<DOE + <EOA =360°
Answers
Step-by-step explanation:
See image
Draw a ray OP opposite to ray OA.
By adding equations, (1) and (2), we get,
I hope it is helpful
Step-by-step explanation:
RaysOA,OB,OC,ODandOE
havethecommonendpointO.
\large \underline{ \bold{ \orange{To \: prove :- }}}
Toprove:−
∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°
\large \underline{ \bold{ \purple{Composition :-}}}
Composition:−
Draw a ray OP opposite to ray OA.
\begin{gathered} \bold{∠AOB , \angle{BOC} \: and \: \angle COP} \\ \bold{are \: linear \: pair \: angles,}\end{gathered}
∠AOB,∠BOCand∠COP
arelinearpairangles,
∴∠AOB+∠BOC+∠COP=180°−−−−(1)∴∠AOB+∠BOC+∠COP=180°−−−−(1)
\begin{gathered} \bold{Also, ∠AOE, ∠DOE \: and \: ∠DOP} \\ \bold{are \: linear \: pair \: angles,}\end{gathered}
Also,∠AOE,∠DOEand∠DOP
arelinearpairangles,
∴∠AOE+∠DOE+∠DOP=180° —–––(2) < /p > < p >∴∠AOE+∠DOE+∠DOP=180°—–––(2)</p><p>
By adding equations, (1) and (2), we get,
∠AOB +∠BOC + ∠COP + AOE + ∠DOE + ∠DOP = 180° + 180°∠AOB+∠BOC+∠COP+AOE+∠DOE+∠DOP=180°+180°
∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°
∠AOB + ∠BOC + ∠COD + ∠DOE + ∠AOE = 360°∠AOB+∠BOC+∠COD+∠DOE+∠AOE=360°
I'm giving my intro