Math, asked by krishapatel6789, 3 months ago

27. Prove that 3-2/5 is irrational.​

Answers

Answered by ItsRuchikahere
3

 \sf \: Let  \: us  \: assume  \: 3- \sqrt[2]{5}   \: is  \: rational \: no.

 \rightarrow 3 - 2 \sqrt{5}  =  \frac{p}{q}  \\  \sf \: where \: p \: and \: q \: are \: coprime \: factors  \\ \sf and \:   q \:  \cancel{ = } \: 0

3 - 2 \sqrt{5}  =  \frac{p}{q}  \\ 2 \sqrt{5}  = 3 -  \frac{p}{q}  \\  \sqrt{5}  =  \frac{3q - p}{2q}  \\  \sf \: but \:  \sqrt{5}  \: is \: irrational \: no.

 \hookrightarrow \sf \: so  \: it  \: contradicts \:  the \:  fact \\  \sf that  \: is  \: rational  \: so  \: our \\  \sf \:  assumption \:  is  \: wrong.

 \sf \:3 - 2 \sqrt{5}   \: is  \: irrational \:  no.

#helpingismypleasure

@ItsRuchikahere

Similar questions