Math, asked by Anonymous, 1 year ago


27. Simplify : [5(8^1/3+27^1/3)^3)]^1/4

29. If a+b+c= 9 and ab + bc+ ca=26 then find a^2+ b^2 + c^2​

Answers

Answered by manas3379
2

Step-by-step explanation:

27)

[5{(8^1/3 + 27^1/3)³}]^1/4

= [5(2 + 3)³]^1/4

= [5×5³]^1/4

= (5⁴)^1/4

= 5

29)

a + b + c = 9

ab + bc + ca = 26

We know,

(a + b + c)²=a² + b² + c² - ab - bc - ca

(9)² = a² + b² + c² - 1(ab + bc + ca)

81 = a² + b² + c² - 1(26)

81 = a² + b² + c² - 26

+ + = 107

Answered by ItzMiracle
89

\huge\star{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W} \purple{E}\orange{R᭄}}}}

1.

[5{(8^1/3 + 27^1/3)³}]^1/4

= [5(2 + 3)³]^1/4

= [5×5³]^1/4

= (5⁴)^1/4

= 5

2.

a + b + c = 9

ab + bc + ca = 26

We \:  know,

(a + b + c)²=a² + b² + c² - ab - bc - ca

(9)² = a² + b² + c² - 1(ab + bc + ca)

81 = a² + b² + c² - 1(26)

81 = a² + b² + c² - 26

a² + b² + c² = 107

Similar questions