Math, asked by khanarshan1783, 7 months ago

27. The adjacent angles of a Parallelogram have equal measure. Find the measure of each of
the angles of the Parallelogram.​

Answers

Answered by Anonymous
1

\huge\underlie\mathfrak\pink{Question}

The adjacent angles of a Parallelogram have equal measure. Find the measure of each of  the angles of the Parallelogram.​

\pink{\bold{\underline{SolutiOn-}}}}

Let ABCD be the parallelogram with ∠A = ∠B.

We know: Sum of adjacent angles = 180°

∠A + ∠B = 180º

2∠A = 180º (∠A = ∠B)

∠A = 90º

∠B = ∠A = 90º

∠C = ∠A = 90º (Opposite angles)

∠D = ∠B = 90º (Opposite angles)  

Thus, each angle of the parallelogram measures 90º.

❥ItzJanu143

Answered by Anonymous
0

\huge\bold{\mathtt{\purple❥{ A{\pink{ N{\green{ S{\blue{ W{\red{ E{\orange{ R}}}}}}}}}}}}}

Let ABCD be the parallelogram with ∠A = ∠B.

We know: Sum of adjacent angles = 180°

∠A + ∠B = 180º

2∠A = 180º (∠A = ∠B)

∠A = 90º

∠B = ∠A = 90º

∠C = ∠A = 90º (Opposite angles)

∠D = ∠B = 90º (Opposite angles)

. ° . each angle of the parallelogram measures 90º.

\huge\red{.........。♡♡。........}

Similar questions