27 , x , y , 79 z
find value x y and z
Answers
Answered by
0
Answer:
Given equations are xy+x+y=23
⇒x(y+1)=23−y
⇒x=
y+1
23−y
(i),
yz+y+z=27
⇒z(y+1)=27−z
⇒z=
y+1
27−y
ii)
and xz+x+z=41 .(iii)
Substituting (i) and (ii), we get
(
y+1
23−y
)(
y+1
27−y
)+
y+1
23−y
+
y+1
27−z
=41
⇒
(y+1)
2
621+y
2
−50y
+
y+1
50−2y
=41
⇒
(y+1)
2
621+y
2
−50y+(50−2y)(y+1)
=41
⇒621+y
2
−50y+50y−50−2y
2
−2y=41y
2
+41+82y
⇒42y
2
+84y−630=0
⇒y
2
+2y−15=0
⇒y
2
−3y+5y−15=0
⇒y(y−3)+5(y−3)=0
⇒(y+5)(y−3)=0
⇒y=−5,3
Substituting y in (i), we get
⇒x=−7,5
Substituting y in (ii), we get
⇒z=−8,6
Similar questions