Math, asked by anisha2184857, 7 months ago

27A two digit number is such that the product of its digits is 35. If 18 is added to the
number, the digit interchange their places. Find the number.​

Answers

Answered by InfiniteSoul
4

\sf{\bold{\green{\underline{\underline{Given}}}}}

  • Product of the no's = 35
  • If 18 is added no. Will interchange its digits

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

  • The original no. = ?

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

  • let the no. be 10x + y

⠀⠀⠀⠀

Acc. to 1st statement :-

⠀⠀⠀⠀

xy = 35

⠀⠀⠀⠀

Acc. to 2nd statement :-

⠀⠀⠀⠀

10x + y + 18 = 10y + x

⠀⠀⠀⠀

10y - y - 10x +x = 18

⠀⠀⠀⠀

9y - 9x = 18

⠀⠀⠀⠀

9( y - x ) = 18

⠀⠀⠀⠀

y - x = 18 / 9

⠀⠀⠀⠀

y - x = 2 ------ ( i )

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{( y + x)^2 - ( y - x)^2 = 4xy }}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ ( y + x )^2  -( 2 )^2 = 4\times35}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ ( y + x)^2 - 4 = 140}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ ( y + x )^2 = 140 + 4}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ ( y + x )^2 = 144 }}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ y + x = \sqrt{144}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ y + x = 12}} ----- ( ii )

⠀⠀⠀⠀

  • Adding eq ( i ) and ( ii )

⠀⠀⠀⠀

y - x + y + x = 12 + 2

⠀⠀⠀⠀

2y = 14

⠀⠀⠀⠀

y = 7

⠀⠀⠀⠀

  • Putting value of y in eq ( i )

⠀⠀⠀⠀

y - x = 2

⠀⠀⠀⠀

7 - x = 2

⠀⠀⠀⠀

x = 7 - 2

⠀⠀⠀⠀

x = 5

⠀⠀⠀⠀

  • finding the original no.

⠀⠀⠀⠀

10x + y

⠀⠀⠀⠀

10 × 5 + 7

⠀⠀⠀⠀

50 + 7

⠀⠀⠀⠀

57

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

  • Required number is 57
Answered by Anonymous
3

Answer:

required number is 57......

Similar questions
Math, 1 year ago