Physics, asked by suavebiento, 3 months ago

28. Electric field due to an infinite non-conducting sheet of surface charge density Sigma, at a distance r from it is
(1)Sigma/2E⁰
(2)Sigma/E⁰
(3) Sigma²/2E⁰
(4)Sigma²/E⁰​

Answers

Answered by Anonymous
5

Question:

Electric field due to an infinite non-conducting sheet of surface charge density  \sigma , at a distance r from it is

  •  \frac{\sigma}{2 \epsilon_0}
  • \frac{\sigma}{\epsilon_0}
  • \frac{\sigma^2}{2 \epsilon_0}
  • \frac{\sigma^2}{ \epsilon_0}

Solution:

(See the attachment for reference)

Here we have:

  •  \sigma = charge ~density
  •  dE= Electric~ field~at~P

Breaking dE in components we have  dEsin \theta and  dE cos \theta

We have

 \sf  \sum q  = \sigma S \\\\ \sf \sf By~flux,~ we ~have ~, \\\\ \phi E = \oint_S \vec{E} \vec{d}s \\\\ \phi E = \oint_{S_1}\vec{E} \vec{d}s +  \oint_{S_2}\vec{E} \vec{d}s+ \oint_{S_3} \vec{E} \vec{d}s \\\\ \oint_{S_1} Eds~cos 0^{\circ}+\oint_{S_2} Eds~cos0^{\circ} +\oint_{S_3} Eds~cos90^{\circ} \\\\ E \oint_{S1} ~dS + E \oint_{S_2} ~dS \\\\ ES+ES = 2ES - - - - [i]

By, Gauss's law, we have:

 \phi E = \frac{ \sum q} {\epsilon_0} \implies  \frac{ \sigma S} {\epsilon_0} - - - - [ii]

From [i] and [ii], we have,

 \phi E= \phi E \\\\ 2ES= \frac{ \sigma S} {\epsilon_0} \\\\ 2E \cancel{S}= \frac{ \sigma \cancel{ S} } {\epsilon_0} \\\\ \boxed{E= \frac{\sigma}{2 \epsilon_0}}

Hence, the correct answer is A.

Attachments:

Anonymous: Ãwēsømê :3
Similar questions