28. Find the area of the shaded region if radii of two concentric circles are 7 and 14 cm
Answers
Answer:
100% correct answer
Hope it's helpful ✌️✌️
Answer:
Answer :- Area of the shaded region =
\frac{154}{3}\: cm^{2} 3
154 cm 2
Step-by-step explanation:
Given O is a centre of a concentric circles.
Let r =OB = 7cm
R = OA = 14cm
<AOC = 40°
We know that,
\begin{gathered}\boxed { Area \: of \: a \: sector \: \\= \frac{x}{360}\times \pi \times (radius)^{2}}\end{gathered}
Now ,
Area of the shades region
= Area of the sector AOC - Area of the sector ABD
= \frac{x}{360}\times \pi \times R^{2}-\frac{x}{360}\times \pi \times r^{2}
360x×π×R 2
− 360x×π×r2
=\frac{x}{360}\times \pi \times (R^{2}-r^{2})
360x×π×(R2−r2)
=\frac{40}{360}\times \pi \times (14^{2}-7^{2})
36040×π×(142−72)
=\frac{1}{9}\times \frac{22}{7} \times (14+7)(14-7)
91×7
22×(14+7)(14−7)
=\frac{1}{9}\times \frac{22}{7} \times 21\times 7
91×7
22×21×7
= \frac{154}{3}\: cm^{2} 3
154 cm 2
Therefore,
Area of the shaded region =\frac{154}{3}\: cm^{2} 3
154 cm 2
••••
Step-by-step explanation:
HOPE THIS HELPS YOU !!.