28. Find the particular solution of the differential equation
dy /dx =1+y^2/1+x^2 given that y(1) = 1?
Answers
Answered by
0
Answer:
(x+1)
dx
dy
=2e
−y
−1⟶eqn.1
dx
dy
+
1+x
1
=
1+x
2e
−y
Eqn.1 can be written as:
2e
−y
−1
1
dy=
1+x
1
dx
⇒
e
y
2
−1
1
dy=
1+x
1
dx
⇒
2−e
y
−(−e
y
)
dy=
1+x
1
dx
⇒(−log∣2−e
y
∣)=log∣x+1∣+C
y=0,x=0
⇒−log2=log1+C
⇒C=−log2
Answer: log(x+1)−log2=−log(2−e
−y
)
⇒log(
2
(x+1)(2−e
−y
)
)=0
Similar questions