Math, asked by poonamgupta3011, 11 months ago

28. Find the roots by the method of parfect square : (x + 2) (x + 3) - 240 = 0​

Answers

Answered by Sharad001
68

Question :-

</p><p> \rm find \:  the \:  roots  \: by \:  the \:  method \:  of \:  perfect  \\  \rm \: square  : (x + 2)(x + 3) - 240 = 0 \\

Answer :-

\to \boxed{ \rm x =  \pm \bigg \{ \frac{ \sqrt{961}  - 5 }{2}  \bigg \}} \:

Used Concept :-

Perfect square method for find roots -

  • Step 1 -Divide all terms by the coefficient of x² (a)

  • Step 2 -Move the term (c/a) to the right side of the equation.

  • Step 3 Complete the square on the left side of the equation and balance this by adding the same value to the right side of the equation.

Solution :-

We have ,

 \to \large \rm (x + 2)(x + 3) - 240 = 0 \\  \\  \sf \: simplify \: it \\  \\\large  \to \rm {x}^{2}  + 3x + 2x + 6 - 240 = 0 \\  \\ \laarge \to \rm  {x}^{2}  + 5x - 234 = 0 \\  \\    \star  \large \bold{ \underline{ step \: (1) }}\:  \\  \to \large \rm here \: coefficient \: of \:  {x}^{2}  \: is \: 1 \:  \: \\  \rm \large \:  \:  \:  \:  so \: no \: effect \: of \: divided \: by \: 1 \\  \\ \large  \mapsto \rm \:  {x}^{2}   + 5x - 234 = 0 \\  \\ \star  \: \bold{ \underline{ step \: (2) }}\: \\  \\ \large  \to \rm move \: the \: constant \: term \: to \: \\  \rm \large  \:  \:  \:  \:  right \: side \\  \\  \to \rm {x}^{2}  + 5x = 234 \\  \\ \star  \: \bold{ \underline{ step \: (3) }}\: \\  \\  \to  \large \rm complete \: square \: by \: adding \: something \\  \:  \\   \large \to \rm  {x}^{2}  + 5x +    { \bigg (\frac{5}{2} \bigg) }^{2}  -  { \bigg( \frac{5}{2} \bigg) }^{2}  = 234 \\  \\  \large \to \rm  { \bigg(x +  \frac{5}{2} \bigg) }^{2}  = 234 +  \frac{25}{4}  \\  \\  \to \rm \large  { \bigg(x +  \frac{5}{2}  \bigg)}^{2}  =  \frac{936 + 25}{4}  \\  \\ \large  \to \rm{ \bigg(x +  \frac{5}{2}  \bigg)}^{2} \:  =  \frac{961}{4}  \\  \\  \rm \large taking \:  \sqrt{}  \: on \: both \: sides \\  \\  \to \rm x +  \frac{5}{2}  =  \frac{ \sqrt{961} }{2}  \\  \\  \to \boxed{ \rm x =  \pm \bigg \{ \frac{ \sqrt{961}  - 5 }{2}  \bigg \}}

Similar questions