Math, asked by ranjanmurmu923, 10 months ago

28. If a, b, c, d are in G.P., show that
(i) a2 + b2, b2 + c2,c2 + d2 are in G.P​

Answers

Answered by Shristideepa
2

Answer:

sorry

Step-by-step explanation:

sorry, l don't know

Answered by Venkataiahpuppala
2

Step-by-step explanation:

a, b, c, d are in G.P.

Therefore,

bc = ad … (1)

b2 = ac … (2)

c2 = bd … (3)

It has to be proved that,

(a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc – cd)2

R.H.S.

= (ab + bc + cd)2

= (ab + ad + cd)2 [Using (1)]

= [ab + d (a + c)]2

= a2b2 + 2abd (a + c) + d2 (a + c)2

= a2b2 +2a2bd + 2acbd + d2(a2 + 2ac + c2)

= a2b2 + 2a2c2 + 2b2c2 + d2a2 + 2d2b2 + d2c2 [Using (1) and (2)]

= a2b2 + a2c2 + a2c2 + b2c2 + b2c2 + d2a2 + d2b2 + d2b2 + d2c2

= a2b2 + a2c2 + a2d2 + b2 × b2 + b2c2 + b2d2 + c2b2 + c2 × c2 + c2d2

[Using (2) and (3) and rearranging terms]

= a2(b2 + c2 + d2) + b2 (b2 + c2 + d2) + c2 (b2+ c2 + d2)

= (a2 + b2 + c2) (b2 + c2 + d2)

= L.H.S.

∴ L.H.S. = R.H.S.

please make me as brainliest

Similar questions