Math, asked by pritikparmar841, 10 months ago

28.
If the sum of the squares of zeros of the polynomial
11
5x2 + 3x + k is -11/25, find value of k​

Answers

Answered by karankirat345
2

 \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 3}{5}

 \alpha  \beta  =  \frac{c}{a}  =  \frac{k}{5}

 { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ - 11}{25}

 { (\alpha   + \beta) }^{2}  =  { \alpha }^{2}  + 2 \alpha  \beta  +  { \beta }^{2}

 {( \frac{ - 3}{5}) }^{2}  =  \frac{ - 11}{25}  + 2( \frac{k}{5} )

 \frac{9}{25}  =  \frac{ - 11}{25}  +  \frac{2k}{5}

 \frac{9}{25}  =  \frac{ - 11 + 10k}{25}

9 + 11 = 10k

20 = 10k

k =  \frac{20}{10}

k = 10

Be Brainly!!!

Similar questions