28. If x =
2a + 3b + 2a - 36
2a + 36 - 2a - 36
prove that 36x2 - 4ax + 36 = 0
>
1
1
1
2.
+.
Answers
Answer:
If x =
2a + 3b + 2a - 36
2a + 36 - 2a - 36
prove that 36x2 - 4ax + 36 = 0
Step-by-step explanation:
x=
2a+3b
−
2a−3b
2a+3b
+
2a−3b
Rationalizing
⇒x=
2a+3b
−
2a−3b
2a+3b
+
2a−3b
×
2a+3b
+
2a−3b
2a+3b
+
2a−3b
⇒x=
2a+3b−2a+3b
2a+3b+2a−3b−2
4a
2
−9b
2
⇒x=
36
2a−
4a
2
−9b
2
⇒36x−2a=−
4a
2
−9b
2
squaring
⇒9b
2
x
2
+4a
2
−12abc=4a
2
−9b
2
⇒96
2
x
2
+96
2
−12abx=0
divide by 3b
⇒36x
2
−4ax+36=0
Step-by-step explanation:
x=
2a+3b
−
2a−3b
2a+3b
+
2a−3b
Rationalizing
⇒x=
2a+3b
−
2a−3b
2a+3b
+
2a−3b
×
2a+3b
+
2a−3b
2a+3b
+
2a−3b
⇒x=
2a+3b−2a+3b
2a+3b+2a−3b−2
4a
2
−9b
2
⇒x=
36
2a−
4a
2
−9b
2
⇒36x−2a=−
4a
2
−9b
2
squaring
⇒9b
2
x
2
+4a
2
−12abc=4a
2
−9b
2
⇒96
2
x
2
+96
2
−12abx=0
divide by 3b
⇒36x
2
−4ax+36=0
please mark me as brainlist