Math, asked by rushikushi402, 7 months ago

28. Let R: Z → Z be a relation defined by R= {(a, b) | a, b e Z, a-b e Z}
(i) V a e Z, (a, a) ER
(ii) (a, b) ER= (b, a) ER
(iii) (a, b), (b, c) ER=(a, c) ER​

Answers

Answered by MaheswariS
7

\underline{\textsf{Given:}}

\textsf{In Z}

\mathsf{_aR_b\;\iff\;a-b\;\in\;Z}

\underline{\textsf{To prove:}}

\textsf{R is an equivalance relation}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{_aR_b\;\iff\;a-b\;\in\;Z}

\underline{\textsf{Reflexive:}}

\textsf{For}\;\mathsf{a\,\in\,Z}

\mathsf{a-a=0,}\;\textsf{which is an integer}

\mathsf{a-a\;\in\;Z}

\implies\mathsf{_aR_a}

\textsf{Hence R is reflexive}

\underline{\textsf{Symmetric:}}

\textsf{Let}\;\mathsf{_aR_b}

\implies\mathsf{a-b}\;\textsf{is an integer}

\implies\mathsf{b-a}\;\textsf{is also an integer}

\implies\mathsf{b-a\;\in\;Z}

\implies\mathsf{_bR_a}

\textsf{Hence R is symmetric}

\underline{\textsf{Transitive:}}

\textsf{Let}\;\mathsf{_aR_b}\;\textsf{and}\;\mathsf{_bR_c}

\implies\textsf{(a-b) and (b-c) are integers}

\textsf{We know that, Sum of two integers is again an integer}

\implies\mathsf{(a-b)+(b-c)}\;\textsf{is also an integer}

\implies\mathsf{a-c}\;\textsf{is also an integer}

\implies\mathsf{a-c\;\in\;Z}

\implies\mathsf{_aR_c}

\textsf{Hence R is transitive}

\therefore\textsf{R is an equivalence relation}

Find more:

A relation R is defined on the set of positive integers as xRy if 2x + y = 5. Therelation Ris

(A) reflexive

(B) transitive

(C) symmetric

(D) not transitive

https://brainly.in/question/24108840

Similar questions