Math, asked by singhmohini1709, 15 hours ago

28: nth of an A.P. is 4 and common difference is
2 at the sum of n terms is (-14) then (A)
First
term of the A.P​

Answers

Answered by rohini170983
2

Answer:

Here is your answer.

Step-by-step explanation:

Please mark me as brainlist.

Attachments:
Answered by MathCracker
12

Question :-

nth of an A.P. is 4 and common difference is

2 at the sum of n terms is (-14) then (A)

First term of the A.P.

Answer :-

  • a = 10 or
  • a = -8

Step by step explanation :-

We go step by step,

Given that,

nth of an A.P. is 4.

Hence,

\rm:\longmapsto{}a + (n - 1)d = 4

Also we have,

=> difference = 2

Now,

\rm:\longmapsto{a + (n - 1)2 = 4} \\  \\\rm:\longmapsto{a + 2n - 2 = 4}  \:  \:  \:  \\  \\ \rm:\longmapsto{a + 2n = 4 + 2} \:  \:    \\  \\ \rm:\longmapsto \red{a = 6 - 2n} \:  \:  \:  \:  \:  \:  \:  \:  \:

Also we have given that,

The sum of n terms is (-14).

Then,

\rm:\longmapsto{ - 14 =  \frac{n}{2}   \{2a + (n - 1)d \}} \\

Substitute the value of d and a,

\rm:\longmapsto{ - 14 =  \frac{n}{2} \{2(6 - 2n) + (n - 1)2 \} } \\  \\\rm:\longmapsto{ - 14 =  \frac{n}{2} (12 - 4n + 2n - 2 ) }  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ - 14 =  \frac{n}{2}(10 - 2n) }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ - 14 =  \frac{n(10 - 2n)}{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ - 14 =  \frac{10n - 2n {}^{2} }{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{ - 14 =  \frac{ \cancel{2}(5n - n {}^{2}) }{ \cancel2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\  \\ \rm:\longmapsto{ - 14 = 5n - n {}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto \red{n {}^{2}  - 5n - 14 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, we factorise the equation,

\rm:\longmapsto{n {}^{2}  - 5n - 14 = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{n {}^{2} - 7n  + 2n - 14 = 0 } \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \\  \\ \rm:\longmapsto{n(n - 7) + 2(n - 7)  = 0}  \:  \:  \:  \:  \:  \:   \: \\  \\ \rm:\longmapsto{(n - 7)(n + 2) = 0} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:   \:  \\  \\ \rm:\longmapsto{n - 7 = 0 \:  \:  \:  \:  \: or \:  \: \:   \:  \:  \: n + 2 = 0} \\  \\ \rm:\longmapsto \red{n = 7 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: n =  - 2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, we have,

=> n = 7

=> n = -2

Substituting n = 7 in a = 6 - 2n,

\rm:\longmapsto{a = 6 - 2n}  \:  \:  \: \\  \\ \rm:\longmapsto{a = 6 - 2(7)} \\  \\ \rm:\longmapsto{a =  6 - 14}  \:  \:  \:  \\  \\ \rm:\longmapsto \red{a =  - 8} \:  \:  \:  \:  \:  \:  \:  \:  \:

And substituting n = -2 in a = 6 - 2n,

\rm:\longmapsto{a = 6 - 2n}  \:  \:  \:  \:  \:  \:  \: \\  \\ \rm:\longmapsto{a = 6 - 2( - 2)}  \: \\  \\ \rm:\longmapsto{a = 6  + 4}  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \rm:\longmapsto \red{a = 10} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

The first term (a) is :

=> a = 10

or

=> a = -8

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

The sum of first n terms of an a.P is 2n2 + n. Find nth term and common difference.

https://brainly.in/question/10660198

The sum of first n terms of an Ap is 2n^2 + n. Find nth term and common difference of the A.P.

https://brainly.in/question/17709819

Similar questions