28. Simon gets a discount of 25% on purchasing
100 VCD's from Samuel. He sells them and makes a
profit equal to the undiscounted price of 25 VCD's.
What is the gain percentage?
(A) 25%
(B) 30% (C) 66.66% (D) 33.33%
Answers
Answer:
oo
Step-by-step explanation:
Solution−
Let
Marked Price of VCD be Rs 100.
Discount % = 25 %
We know that,
\boxed{\red{\sf\:S.P. = \dfrac{(100 - Discount\%) \times MP}{100}}}
S.P.=
100
(100−Discount%)×MP
where,
S.P. means Selling Price
MP means Marked Price
So,
Selling price of 1 VCD by Samuel is
\rm :\longmapsto\:SP_{(VCD \: by \: Samuel)} = \dfrac{(100 - 25) \times 100}{100}:⟼SP
(VCDbySamuel)
=
100
(100−25)×100
\rm :\longmapsto\:SP_{(VCD \: by \: Samuel)} = 75:⟼SP
(VCDbySamuel)
=75
Since,
Samuel sold 100 VCD.
So,
\rm :\longmapsto\:SP_{(100 \: VCD \: by \: Samuel)} = 75 \times 100 = 7500:⟼SP
(100VCDbySamuel)
=75×100=7500
Since,
Selling Price of 100 VCD by Samuel become purchased price of Simons.
So,
Cost Price of 100 VCD = Rs 7500
It is given that
Profit made by Simon on Selling 100 VCD's is equal to the undiscounted price of 25 VCD's.
It means,
Profit = 25 × 100 = Rs 2500
Thus,
We have,
Cost Price of 100 VCD's = Rs 7500
Profit on Selling 100 VCD's = Rs 2500
We know,
\boxed{\red{\sf\:Profit\% \: = \: \dfrac{Profit}{Cost Price} \times 100\%}}
Profit%=
CostPrice
Profit
×100%
On substituting the values, we get
\rm :\longmapsto\:Profit\% = \dfrac{2500}{7500} \times 100\%:⟼Profit%=
7500
2500
×100%
\rm :\longmapsto\:Profit\% = \dfrac{100}{3}\% = 33.33\%:⟼Profit%=
3
100
%=33.33%
\bf\implies \:Option \: (d) \: is \: correct⟹Option(d)iscorrect
\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain \%) \: (or) \:(100 - Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
MoreFormulae
MoreFormulae
★Gain=S.P.–C.P.
★Loss=C.P.–S.P.
★Gain%=(
C.P.
Gain
×100)%
★Loss%=(
C.P.
Loss
×100)%
★S.P.=
100
(100+Gain%)(or)(100−Loss%)
×C.P.