Math, asked by richuramesh, 3 months ago

28
The hypotenuse of a right triangle is 65cm
and as area is 15/2cm square. Calculate the
lengths of its perpendiculars sides?
م

Answers

Answered by mathdude500
0

Correct Question :-

  • The hypotenuse of a right triangle is 65cm and as area is 750 cm square. Calculate the lengths of its perpendiculars sides?

Given :-

  • The hypotenuse of a right triangle is 65cm.
  • Area of triangle is 750 cm square.

To Calculate :-

  • Lengths of its perpendiculars sides

Identity used :-

\large \red{\bf \:  ⟼ Pythagoras \:  Theorem } ✍

\begin{gathered}{\boxed{\bf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\end{gathered}

\boxed{\bf \:Area \:  of  \: triangle = \dfrac{1}{2}  \times base \times height}

\large \red{\bf \:  ⟼ Solution :- } ✍

\begin{gathered}\bf\red{Let,} \end{gathered}

\begin{gathered}\longmapsto\:\:\bf{Height  \:is \:y\: cm}. \\ \end{gathered}

\begin{gathered}\longmapsto\:\:\bf{Base \:is \:x\:cm}. \end{gathered}

\begin{gathered}\bf\green{According\:to\:the\:question,} \\ \end{gathered}

{\bf \:Area \:  of  \: triangle = \: 750}

{\bf \:Area \:  of  \: triangle = \dfrac{1}{2}  \times base \times height}

\bf \:  ⟼ 750 = \dfrac{1}{2}  \times x \times y

\bf \:  ⟼ xy = 1500 \: ⟼ (1)

\begin{gathered}\bf\pink{Now} \\ \end{gathered}

\begin{gathered}\bf\red{hypotenuse \:  = 65 \: cm} \end{gathered}

We know,

\begin{gathered}{\boxed{\bf{\pink{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\end{gathered}

\bf \:  ⟼  {x}^{2}  +  {y}^{2}  =  {65}^{2}

On substituting the value of y, from equation (1), we get

\bf \:  ⟼  {x}^{2}  +  ({\dfrac{1500}{x} })^{2}  = 4225

\bf \:  ⟼  {x}^{2}  + \dfrac{22500}{ {x}^{2} } = 4225

\bf \:  ⟼  {x}^{4 }  - 4225 {x}^{2}  + 22500 = 0

\bf \:  ⟼  {x}^{4}  - 3600 {x}^{2}  - 625 {x}^{2}  + 22500 = 0

\bf \:  ⟼  {x}^{2} ( {x}^{2}  - 3600) - 625( {x}^{2}  - 3600) = 0

\bf \:  ⟼ ( {x}^{2}  - 3600)( {x}^{2}  - 625) = 0

\bf \:  ⟼  {x}^{2}  = 3600 \: or \:  {x}^{2} = 625

\bf \:  ⟼ x = 60 \: or \: x = 25

\bf\implies \:y = 25 \: or \: y = 60

\bf \:\large \red{Length \:  of \:  perpendicular \:  sides \: are \:} ✍

\bf \:  ⟼ 60 \: cm \: and \: 25 \: cm

م

م

Similar questions