Math, asked by vimithamadhu, 5 months ago

28.Threee vertices of a parallelogram ABCD are ( 1, 2 ) , ( 4, 3 ) ,( 6 , 6 ) . Find the 4th vertex.​

Answers

Answered by adarshojha984
4

Answer:

3,5

Step-by-step explanation:

Use two points distance formula (as opp. sides are equal in parallelogram

And two point slope formula ( as opp. sides of a parallelogram have equal slopes

Answered by MagicalLove
85

 \sf \huge \underline \blue{†Given†}

Three vertices of a parallelogram are A( 1, 2 ) , B ( 4, 3 ) ,C( 6 , 6 )

 \sf \huge \underline \blue{†To \: \: Find†}

4th vertex of parallelogram

 \sf \huge \underline \blue{†Concept†}

In a parallelogram, diagonals bisect each other

 \sf \huge \underline \blue{†Formula\:\: Used†}

 \bf \large \green{»P(x,y) =  \left( \dfrac{x_1 + x_2}{2}  \:  \:  \:  \dfrac{y_1 + y_2}{2}  \right)} \\

 \sf \huge \underline \blue{†Solution†}

O is the mid point of AC and BD

NOW,

In line AC

 \tt \leadsto \pink{P(x,y)= \left( \frac{1 + 6}{2}  \:  \:  \:  \frac{2 + 6}{2} \right )} \\

 \tt \leadsto \pink{P(x,y)= \left( \frac{7}{2}  \:  \:  \:  \:  \:  \: ,\:  \:  \:  \frac{8}{2} \right )} \\

\tt \leadsto \pink{P(x,y)= \left( \frac{7}{2}  \:  \:  \:  \:  \:  \: ,\:  \:  \:  4 \right )} \\

In line BD

\tt \leadsto \pink{ \left( \frac{4 + x}{2}  \:  \:  \:  \:  \:  \: ,\:  \:  \:  \frac{3 + y}{2} \right ) = \left( \frac{7}{2}  \:  \:  \:  \:  \:  \: ,\:  \:  \:  \frac{8}{2} \right )} \\

\tt \leadsto \pink{ \left( \frac{4 + x}{2} \right) =   \left( \frac{7}{2} \right)\:  \:  \:  \:  \:  \: ,\:  \:  \:  \left (\frac{3 + y}{2} \right ) =   \:  \:  \:  \:  \:  \: \:  \:  \:  \left( \frac{8}{2} \right )} \\

\tt \leadsto \pink{4 + x = 7 \:  \: and \:  \: 3 + y = 8} \\

\tt \leadsto \pink{x = 3 \:  \: and \:  \: y = 5}

° The fourth vertex of parallelogram is D (3,5)


viratdhoni187: well explained
Anonymous: Gr8 answer!
MagicalLove: Tq di akka !! (viratdhoni187)
MagicalLove: Tq sir ( Thala Pro )
viratdhoni187: it's ohk sis
Similar questions