Math, asked by abishekjanaki, 5 months ago

28.Verify that whether -1 is zero of the polynomial p(x) = 2x

3

- 9x

2 + x + 12 and find the

value of p(0), p(1), p(2).​

Answers

Answered by Anonymous
36

Correct Question

  • Verify that whether -1 is a zero of the polynomial p(x) = 2x³ - 9x² + x + 12 and find the value of p(0), p(1) and p(2).

Given Equation

  • p(x) = 2x³ - 9x² + x + 12.

To prove

  • -1 is zero of the given polynomial.

To find

  • Value of

⠀⠀⠀⠀⠀⠀⠀⠀→ p(0)

⠀⠀⠀⠀⠀⠀⠀⠀→ p(1)

⠀⠀⠀⠀⠀⠀⠀⠀→ p(2)

Solution

  • Firstly, we will verify whether -1 is a zero of the given polynomial.

\tt\longrightarrow{p(x) = 2x^3 - 9x^2 + x + 12}

\tt\longrightarrow{p(-1) = 2(-1)^3 - 9(-1)^2 + (-1) + 12}

\tt\longrightarrow{p(-1) = 2(-1) - 9(1) - 1 + 12}

\tt\longrightarrow{p(-1) = -2 - 9 + 11}

\tt\longrightarrow{p(-1) = -11 + 11}

\tt\longrightarrow{p(-1) = 0}

We find that p(-1) = 0

  • Hence it is proved that -1 is a zero of given polynomial.

\: \: \: \: \: \: \: \underline{\sf{\red{Finding\: the\: values}}}

\large{\boxed{\boxed{\sf{Case\: I}}}}

x = 0

\tt:\implies{p(0) = 2(0)^3 - 9(0)^2 + (0) + 11}

\tt:\implies{p(0) = 2(0) - 9(0) + 0 + 11}

\tt:\implies{p(0) = 0 - 0 + 11}

\bf:\implies{p(0) = 11}

  • p(0) = 11

\large{\boxed{\boxed{\sf{Case\: II}}}}

x = 1

\tt:\implies{p(1) = 2(1)^3 - 9(1)^2 + (1) + 11}

\tt:\implies{p(1) = 2(1) - 9(1) + 1 + 11}

\tt:\implies{p(1) = 2 - 9 + 12}

\bf:\implies{p(1) = 5}

  • p(1) = 5

\large{\boxed{\boxed{\sf{Case\: III}}}}

x = 2

\tt:\implies{p(2) = 2(2)^3 - 9(2)^2 + (2) + 11}

\tt:\implies{p(2) = 2(8) - 9(2) + 2 + 11}

\tt:\implies{p(2) = 16 - 18 + 13}

\bf:\implies{p(2) = 11}

  • p(2) = 11

Hence,

  • The values of

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀→ p(0) = 11

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀→ p(1) = 5

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀→ p(2) = 11

━━━━━━━━━━━━━━━━━━━━━━

Answered by ayushchaubey11
4

Answer:

p(0) = 12

p(1) = 6

p(2) = 4

Step-by-step explanation:

mark as brainleast

Attachments:
Similar questions