Computer Science, asked by gauranshgupta252, 3 months ago

(283) 10 =(?)2

a. (010101011) 2

b. (011001110) 2

c. (100011011) 2

d. (101011111) 2​

Answers

Answered by ashupagal422
0

Answer:

10189746843

Explanation:

3785372733

Answered by anindyaadhikari13
0

Required Answer:-

Given Number:

  • (283)₁₀

To Find:

  • The binary equivalent of the given number.

Solution:

Conversion is given as:

\begin{array}{c|c|c}\sf\underline{2}&\sf\underline{283}&\underline{}\\\sf\underline{2}&\sf\underline{141}&\sf\underline{1}\\\sf\underline{2}&\sf\underline{70}&\sf\underline{1}\\\sf\underline{2}&\sf\underline{35}&\sf\underline{0}\\\sf\underline{2}&\sf\underline{17}&\sf\underline{1}\\\underline{2}&\sf\underline{8}&\sf\underline{1}\\\sf\underline{2}&\sf\underline{4}&\sf\underline{0}\\\sf\underline{2}&\sf\underline{2}&\sf\underline{0}\\\sf\underline{2}&\sf\underline{1}&\sf\underline{0}\\&\sf0&\sf1\end{array}

Now, write the remainders obtained from bottom to top.

>> (283)₁₀ = (1000 1101 1)₂

Hence, option C is the right answer for the problem.

Answer:

  • (283)₁₀ = (1000 1101 1)₂

Steps to Solve:

  • Divide the number by 2.
  • Write the quotient and remainder.
  • Repeat the above two processes till the quotient is not zero.
  • Write the remainders obtained from bottom to top.
  • Result obtained is the binary equivalent of the number.

•••♪

Similar questions