Math, asked by kavyadixit1200, 5 months ago

28x + 4y - z = 32 x + 3y + 10z = 24 2x + 17y + 4z = 35

Answers

Answered by salonisondawale09
6

Answer:

1] 28x + 4y - z = 32

[2] 2x + 17y + 4z = 35

[3] x + 3y + 10z = 24

Solve by Substitution :

// Solve equation [3] for the variable x

[3] x = -3y - 10z + 24

// Plug this in for variable x in equation [1]

[1] 28•(-3y-10z+24) + 4y - z = 32

[1] - 80y - 281z = -640

// Plug this in for variable x in equation [2]

[2] 2•(-3y-10z+24) + 17y + 4z = 35

[2] 11y - 16z = -13

// Solve equation [2] for the variable y

[2] 11y = 16z - 13

[2] y = 16z/11 - 13/11

// Plug this in for variable y in equation [1]

[1] - 80•(16z/11-13/11) - 281z = -640

[1] - 4371z/11 = -8080/11

[1] - 4371z = -8080

// Solve equation [1] for the variable z

[1] 4371z = 8080

[1] z = 8080/4371

// By now we know this much :

x = -3y-10z+24

y = 16z/11-13/11

z = 8080/4371

// Use the z value to solve for y

y = (16/11)(8080/4371)-13/11 = 6587/4371

// Use the y and z values to solve for x

x = -3(6587/4371)-10(8080/4371)+24 = 4343/4371

Answered by ravilaccs
0

Answer:

Solution is {x,y,z} = {4343/4371,6587/4371,8080/4371}

Step-by-step explanation:

System of Linear Equations entered :

 [1]    28x + 4y - z = 32

 [2]    x + 3y + 10z = 24

[3]    2x + 17y + 4z = 35

Solve by Substitution :

// Solve equation [2] for the variable  x

[2]    x = -3y - 10z + 24

// Plug this in for variable  x  in equation [1]

 [1]    28*(-3y-10z+24) + 4y - z = 32\\  [1]     - 80y - 281z = -640

// Plug this in for variable  x  in equation [3]

[3]    2*(-3y-10z+24) + 17y + 4z = 35\\  [3]    11y - 16z = -13

// Solve equation [3] for the variable  y

[3]    11y = 16z - 13\\  [3]    y = 16z/11 - 13/11

// Plug this in for variable  y  in equation [1]

 [1]     - 80*(16z/11-13/11) - 281z = -640\\  [1]     - 4371z/11 = -8080/11\\  [1]     - 4371z = -8080

// Solve equation [1] for the variable  z

 [1] 4371z = 8080 \\   [1] z =\frac{8080}{4371}

/ By now we know this much :

  x = -3y-10z+24\\    y = 16z/11-13/11\\    z = 8080/4371

// Use the  z  value to solve for  y

  y = (16/11)(8080/4371)-13/11 = 6587/4371

// Use the  y  and  z  values to solve for  x

x = -3(6587/4371)-10(8080/4371)+24 = 4343/4371

Solution :

{x,y,z} = {4343/4371,6587/4371,8080/4371}

Similar questions