Physics, asked by reshampatil3175, 11 months ago

29. A particle performs a linear S.H.M. along a line
20√2 cm. find at what distance from the mean
position its K.E. is equal to its P.E. (Ans. x = =
10 cm)​

Answers

Answered by nirman95
73

Answer:

Given:

Amplitude = 20√2 cm

To find:

Distance from mean position where potential energy and Kinetic energy will be same.

Formulas used:

1. \: KE =  \frac{1}{2} m { \omega}^{2}( {a}^{2}   -  {x}^{2} ) \\

2. \: PE =  \frac{1}{2} m { \omega}^{2} {x}^{2}   \\

Calculation:

As per the question;

PE = KE

 =  >   \frac{1}{2} m { \omega}^{2}( {a}^{2}   -  {x}^{2} )  =  \frac{1}{2}m { \omega}^{2}   {x}^{2}  \\

 =  >  {a}^{2}  -  {x}^{2}  =  {x}^{2}  \\

 =  >  2{x}^{2}  =  {a}^{2}

 =  > x =  \frac{a}{ \sqrt{2} }  \\

 =  > x =  \frac{20 \sqrt{2} }{ \sqrt{2} }  \\

 =  > x = 20 \: cm

So final answer is 20 cm from mean position.

Answered by BrainlyCoder
44

\huge{\colorbox{red}{Solution:}}

\huge{\pink{\underline{\underline{\mathfrak{Answer:}}}}}

\green{Mean \:position\: = 20 cm}

\huge{\pink{\underline{\underline{\mathfrak{Explanation:}}}}}

\green{As\:we\:know\:that,}

\orange{\begin{lgathered}1. \: KE = \frac{1}{2} m { \omega}^{2}( {a}^{2} - {x}^{2} ) \\\end{lgathered}}

\orange{\begin{lgathered}2. \: PE = \frac{1}{2} m { \omega}^{2} {x}^{2} \\\end{lgathered}}

\green{According\:to\: the\: question,}

\blue{Potential\:Energy = Kinetic\:Energy}

\blue{\begin{lgathered}= > \frac{1}{2} m { \omega}^{2}( {a}^{2} - {x}^{2} ) = \frac{1}{2}m { \omega}^{2} {x}^{2} \\\end{lgathered}}

\blue{\begin{lgathered}= > {a}^{2} - {x}^{2} = {x}^{2} \\\end{lgathered}}

\blue{{\begin{lgathered}= > x = \frac{a}{ \sqrt{2} } \\\end{lgathered}}}

\blue{\begin{lgathered}= > x = \frac{20 \sqrt{2} }{ \sqrt{2} } \\\end{lgathered}}

\green{=>x=20cm}

\red{Therefore,\: mean\: position\: is\: from \:20 cm.}

\pink{\underline{\underline{\mathfrak{Links\: of\:this\: Question→}}}}

https://brainly.in/question/15199091

Similar questions