Math, asked by vdjoshi91, 1 month ago

29.Areas of two similar triangles are 36 cm2 and 100 cm2. If the length of a side of the larger triangle is 20 cm, then the length of the corresponding side of the smaller triangle is: E. (A) 12cm F. (B) 13cm G. (C) 14cm H. (D) 15cm 30 Afla nalo 10 m high​

Answers

Answered by King412
15

 \\  \large\underline{ \green{ \rm \: Answer :-} }\\

  • Option (A) is correct.

 \\  \rm \underline{\green{ Given }}:-  \begin{cases} \sf {Area \:  of  \: smaller  \:  \: triangle = 36 {cm}^{2} } \\    \sf Area \:  of  \: larger  \:  \: triangle = 100 {cm}^{2} \\  \sf length \: of \: larger \: side \: is \: 20cm \end{cases} \\

 \\  \large \underline{\green{ \rm \: To \: find  : -  }} \\

  • The length of the corresponding side of the smaller triangle.

 \\  \underline{\large \green{ \rm \: Solution :-} }\\

Let's start,

Let the length of smaller triangle's corresponding side be p.

So, Using property of“ area of similar triangle”.

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \frac{Area \:  of  \: larger  \: triangle}{Area \:  of \:  smaller  \: triangle}  =  \frac{(Side  \: of  \: larger \:  triangle  )^{2} }{(Side  \: of  \: smaller   \:  triangle ) ^{2} }  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:  \frac{100}{36}  =   \frac{{(20)}^{2} }{ {p}^{2} }  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:  \frac{100}{36}  =   \frac{400 }{ {p}^{2} }  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:   {p}^{2}  =   \frac{400  \times 36}{ 100}  \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:   {p}^{2}  =   {4\times 36} \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:   {p}^{2}  =  144\\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:   p  =  \sqrt{144} \\

 \\  \sf \:  \:  \:  \:  \:  \:  \implies \:  \:  \boxed{  \blue{ \frak{ p  =  12cm}}} \\

Hence, The length of corresponding side of the smaller triangle is 12 cm.

Similar questions