29. If a and B are the zeroes of the polynomial 6y2 – 7y + 2, find a quadratic polynomial whose zeroes are
1÷alpha and 1÷bita
Answers
Answer:
polynomial=2x^2 + 7x + 6
Step-by-step explanation:
A=alpha and B=beta
6y^2 -7y + 2
6y^2 -3y -4y +2
3y(2y -1) - 2(2y-1)
(3y-2)(2y-1)
3y-2=0
3y=2
y=2/3=A=alpha
also 2y-1=0
2y=1
y=1/2=B=beta
1/(2/3)=3/2=1/alpha=alpha(a)-this is alpha for the eq to be formed
1/(1/2)=2=1/beta=beta(b)-this is beta for the eq to be formed
alpha + beta = -b/a
3/2+2=7/2=-b/a
alpha X beta = c/a
3/2*2=3/1=c/a
3*2/1*2=6/2=c/a
therefore,
a=2
b=7
c=6
polynomial=2x^2 + 7x + 6
Step-by-step explanation:
6y2 - 7y +2
6y2 -4y-3y +2
2y( 3y -2) -1 (+3y -2)
(3y-2) (2y -1)
alpha = 2/3 & ß= 1/2
(à+ ß) = -b/ a & àß = c/a
2/3+1/2= -b/a
7/6= -b/a
b = (-7) & a = 6 -------------(I)
àß = c/a
2/3 x 1/2 = 2/6
2/6 = c/a
c= 2 --------------------(ii)
à+ ß = -b/a
1/à + 1/ß = - a/ b
3/2 + 2/1 = -a / b
7/2 = - a/b
a = -7 & b = 2
also..
àß = c/a
1/à x 1/ß = a/c
3/2 x 2/1 = a/c
3= -7/c
c= -7/3
eqn will be....
-7y² + 2y -7/3
multiply eqn with -3
Ans : 21y² -6y + 7