Math, asked by aayushi3569, 8 months ago

29. If cose + seco = 2, then the value of cos8o + sino is
(1) 2
(2)
(3) 4
(4) 8​

Attachments:

Answers

Answered by RvChaudharY50
3

Solution :-

cosA + secA = 2

→ cosA + (1/cosA) = 2

→ (cos²A + 1)/cosA = 2

→ cos²A + 1 = 2cosA

→ cos²A - 2cosA + 1 = 0

→ cos²A - 2 * 1 * cosA + (1)² = 0

comparing with a² - 2ab + b² = (a - b)² we get,

→ (cosA - 1)² = 0

→ cosA - 1 = 0

→ cosA = 1

Therefore,

cosA = cos0°

→ A = 0°

cos^8A + sin^8A

→ cos^8(0°) + sin^8(0°)

→ (1)^8 + (0)^8

→ 1 + 0

1 (Ans.)

Similar questions