29. In the figure, angle ACB = 4 angle ABC, and CP bisects angle ACB. Find
(b) ABC
(a) BPC
Answers
Given:
ACB = 4 angle ABC, and CP bisects angle ACB
To Find:
(a) ABC
(b) BPC
Solution:
Now let us find (a)
Let ∠ABC = x,
∵∠ ACB = 4 × ∠ABC,
⇒ ∠ ACB = 4x,
In diagram,
∠ CAB = 90°,
Thus, in triangle ABC,
∠ ABC + ∠ ACB + ∠ CAB = 180°(Angle Sum Property)
x + 4x + 90 = 180
5x + 90 = 180
5x = 90
⇒ x = 18
Hence, ∠ABC = 18°
Next we will find (b)
Now, CP bisects angle ACB that is, ∠BCP = ∠ACP
∵ ∠ ACB = ∠BCP + ∠ACP = ∠BCP + ∠BCP = 2∠BCP
⇒ 2∠BCP= 4x = 72°
⇒ ∠ BCP = 36°
In triangle BCP,
∠BCP + ∠ BPC + ∠ CBP = 180°(Angle Sum Property)
⇒ 36° + ∠ BPC + 18° = 180°
⇒ ∠ BPC + 54° = 180°
⇒ ∠ BPC = 126°
Hence, ∠ BPC = 126°
Answer:
Step-by-step explanation:
Now let us find (a)
Let ∠ABC = x,
∵∠ ACB = 4 × ∠ABC,
⇒ ∠ ACB = 4x,
In diagram,
∠ CAB = 90°,
Thus, in triangle ABC,
∠ ABC + ∠ ACB + ∠ CAB = 180°(Angle Sum Property)
x + 4x + 90 = 180
5x + 90 = 180
5x = 90
⇒ x = 18
Hence, ∠ABC = 18°
Next we will find (b)
Now, CP bisects angle ACB that is, ∠BCP = ∠ACP
∵ ∠ ACB = ∠BCP + ∠ACP = ∠BCP + ∠BCP = 2∠BCP
⇒ 2∠BCP= 4x = 72°
⇒ ∠ BCP = 36°
In triangle BCP,
∠BCP + ∠ BPC + ∠ CBP = 180°(Angle Sum Property)
⇒ 36° + ∠ BPC + 18° = 180°
⇒ ∠ BPC + 54° = 180°
⇒ ∠ BPC = 126°
Hence, ∠ BPC = 126°