Math, asked by rishi92ranjan, 1 year ago

29 no please help me

Attachments:

Answers

Answered by Anonymous
0
Solution :
________

Given that :

y =  \frac{ {e}^{  x}  +  {e}^{ - x} }{ {e}^{x}  -  {e}^{ - x} }

On differentiate with respect to x :
 \frac{dy}{dx}  =  \frac{ ({e}^{x}  -  {e}^{ - x})( {e}^{x}  -  {e}^{ - x}) - ( {e}^{x} +  {e}^{ - x} )( {e}^{x}  +  {e}^{ - x} )   }{ { ({e}^{x} -  {e}^{ - x})  }^{2}  }  \\  \\  =  >  \frac{dy}{dx}  =  \frac{ {( {e}^{x} -  {e}^{ - x} ) }^{2} -  {( {e}^{x}  +  {e}^{ - x}) }^{2}  }{ {( {e}^{x} -  {e}^{ - x})  }^{2} }

Similar questions