29. Prove that, (cosec -cot)^2 = 1 - cos÷
1 + cos
Answers
Answered by
2
Answer:
( cosecA - cotA )^2 = ( 1 - cosA ) / ( 1 + cosA )
Step-by-step explanation:
= > ( cosecA - cotA )^2
From the properties of trigonometric functions :
- cosecB = 1 / sinA
- cotB = cosB / sinB
= > { ( 1 / sinA ) - ( cosA / sinA ) }^2
= > ( 1 / sin^2 A ) { 1 - cosA }^2
= > ( 1 - cosA )^2 / sin^2 A
= > { ( 1 - cosA )( 1 - cosA ) } / { 1 - cos^2 A } { sin^2 A = 1 - cos^2 A }
= > { ( 1 - cosA )( 1 - cosA ) } / { ( 1 + cosA )( 1 - cosA ) } { using a^2 - b^2 = ( a + b )( a - b ), 1 - cos^2 A = ( 1 + cosA )( 1 - cosA ) }
= > ( 1 - cosA ) / ( 1 + cosA ) { 1 - cosA was common in numerator & denominator, which has been cancelled out }
Hence, ( cosecA - cotA )^2 = ( 1 - cosA ) / ( 1 + cosA )
Similar questions