Math, asked by 917223039416, 4 months ago

29 रेखाओं r = (i^+2j^+k^)t(i^-j^+k^) और r = (2i^-j^-k^)+u(2i^+j^+2k^
)
के बीच की न्यूनतम दूरी ज्ञात कीजिए।​

Answers

Answered by pulakmath007
7

SOLUTION

TO DETERMINE

The shortest distance between the lines

 \vec{r} = ( \hat{i} + 2\hat{j} + \hat{k}) + t( \hat{i}  - \hat{j} + \hat{k})

 \vec{r} = ( 2\hat{i}  - \hat{j}  -  \hat{k}) + u(2 \hat{i}   +  \hat{j} +2 \hat{k})

CONCEPT TO BE IMPLEMENTED

General equation of any line is

 \vec{r} =  \vec{a} +  t \vec{b}

Then the shortest distance between two lines

 \displaystyle \:   =  \frac{ | \: ( \vec{a_2 } -  \vec{a_1 }). (\vec{b_1 }  \times  \vec{b_2 }) \: | }{ | \: \vec{b_1 }  \times  \vec{b_2 } \: | }

EVALUATION

Here the given equation of the lines are

 \vec{r} = ( \hat{i} + 2\hat{j} + \hat{k}) + t( \hat{i}  - \hat{j} + \hat{k})

 \vec{r} = ( 2\hat{i}  - \hat{j}  -  \hat{k}) + u(2 \hat{i}   +  \hat{j} +2 \hat{k})

Comparing with the general equation

 \vec{r} =  \vec{a} +  t \vec{b}

we get

 \vec{a_1 } = ( \hat{i} + 2\hat{j} + \hat{k})

 \vec{b_1 } = ( \hat{i}  - \hat{j} + \hat{k})

 \vec{a_2 } =( 2\hat{i}  - \hat{j}  -  \hat{k})

 \vec{b_2 } =(2 \hat{i}   +  \hat{j} +2 \hat{k})

Now

 \vec{a_2 } -  \vec{a_1 }

 = ( 2\hat{i}  - \hat{j}  -  \hat{k})  - ( \hat{i} + 2\hat{j} + \hat{k})

 = ( \hat{i}  - 3\hat{j}  - 2 \hat{k})

Again

 \vec{b_1 }  \times  \vec{b_2 }

 = \displaystyle\begin{vmatrix}  \hat{i} &  \hat{j} &  \hat{k}\\ 1 &  - 1 &  1 \\ 2 & 1 &  2 \end{vmatrix}

 =  - 3 \hat{i}   + 0\hat{j}   + 3 \hat{k}

Now

 | \vec{b_1 }  \times  \vec{b_2 }|

 =  \sqrt{ {( - 3)}^{2} +  {(3)}^{2}  }

 =  \sqrt{ 9 + 9}

 =  \sqrt{ 18}

 = 3 \sqrt{2}

Again

( \vec{a_2 } -  \vec{a_1 }). (\vec{b_1 }  \times  \vec{b_2 })

 = ( \hat{i}  - 3\hat{j}  - 2 \hat{k}).( - 3 \hat{i}   + 0\hat{j}   + 3 \hat{k})

 =  - 3 - 6

 =  - 9

Hence the required shortest distance

 \displaystyle \:   =  \frac{ | \: ( \vec{a_2 } -  \vec{a_1 }). (\vec{b_1 }  \times  \vec{b_2 }) \: | }{ | \: \vec{b_1 }  \times  \vec{b_2 } \: | }

 \displaystyle \sf{ =  \frac{ |  - 9| }{3 \sqrt{2} }  \:  \:  \: unit}

 \displaystyle \sf{  =  \frac{ 9 }{3 \sqrt{2} }  \:  \:  \: unit}

 \displaystyle \sf{=  \frac{3 }{ \sqrt{2} }  \:  \: unit}

 \displaystyle \sf{  =  \frac{3 \sqrt{2}  }{2} \:  \:  \:  \: unit  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. a butterfly is moving in a straight line in the space.

let this path be denoted by a line l whose equation is x-2/2=2-y...

https://brainly.in/question/30868719

2. Find the distance of point p(3 4 5) from the yz plane

https://brainly.in/question/8355915

Similar questions