Math, asked by saiudvi, 5 months ago

29. The perimeter of an equilateral triangle is 60mt then the area is_mt?
A) 10√3
B) 15√3
C)20√3
D) 100√3​

Answers

Answered by Anonymous
25

\huge{\underline{\underline{\tt{\pink{Answer}}}}}\:

\:\sf\underline\green{Given}\:

The perimeter of an equilateral triangle is 60m

\:\sf\underline\purple{To\:find}\:

The area of the given triangle

\:\sf\underline\orange{Concept\:insight}\:

The perimeter of an equilateral triangle is 3 × length of side . The area of an equilateral triangle is \sf\frac{\sqrt{3}}{4} × (Side)²

\:\sf\underline\red{Solution}\:

Let us take the measurement of each side of the triangle as x .

Now we know that the perimeter of the triangle would be ,

= 3 × x = 60

= 3x = 60

= x = \sf\frac{60}{3}

= x = 20 m

For finding the area , we have the formula as \sf\frac{\sqrt{3}}{4} × (Side)²

Let's substitute the value of side as 20 m

We have ,

= \sf\dfrac{\sqrt{3}}{4} × 20 × 20

= \sf\dfrac{\sqrt{3}}{4} × 400

= \sf\sqrt{3} × 100

= \sf{100\:\times\:\sqrt{3}}

Therefore , the answer is D) 100√3


Anonymous: Amazing!
Answered by MяMαgıcıαη
150

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 {\bf \underline{ Given}}\begin{cases} & \sf{Perimeter\:of\;the\:triangle\;is\: \bf{60\;m}} \\ & \sf{Given\;triangle\;is\;\bf{equilateral}} \end{cases}\\ \\

{ \bold { \underline{To\:Find : }}} \:

  • Area of given triangle

{ \bold { \underline{Solution : }}} \:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\large\underbrace{\underline{\sf{How\: to\: solve\: it\: :}}}

Firstly, we will find the side of the triangle by putting values in the formula of the perimeter of triangle . Then, we will put value of it's side in formula of area of equilateral triangle.

So, let's start solving !!

━━━━━━━━━━━━━━━━━━━━━━━━━

❂ Let one side of triangle = x m ❂

Triangle is equilateral!

∴ All sides = x m

➪ Perimeter = x + x + x

➪ 3x = 60

➪ x = 60/3

➪ x = 20

∴ Side of triangle = 20 m

Noω,

{\boxed  {\boxed {\underline {\overline {\sf  \bigstar \:Area_{(Equilateral\:triangle)}\leadsto\:\dfrac{\sqrt{3}}{4} \:\times\:(side)^2\:\bigstar\:\:}}}}}

Putting all values :-

\:\:\:\:\:\ratio\implies\:\sf{\dfrac{\sqrt{3}}{4} \:\times\:(20)^2}

\:\:\:\:\:\ratio\implies\:\sf{\dfrac{\sqrt{3}}{4} \:\times\:20\:\times\:20}

\:\:\:\:\:\ratio\implies\:\sf{\dfrac{\sqrt{3}}{\cancel{4}} \:\times\:{\cancel{20}\:\times\:20}}

\:\:\:\:\:\ratio\implies\:\sf{\sqrt{3} \:\times\:5\:\times\:20}

\:\:\:\:\:\ratio\implies\:\sf{\sqrt{3} \:\times\:100}

\:\:\:\:\:\ratio\implies\:\boxed{\boxed{\sf{100\sqrt{3} }}}\:\bigstar

So, area of triangle = 1003

\underline{\boxed {\tt {\therefore  {Option\:(D)\:100\sqrt{3}\:is\:correct}}}}\:\bigstar

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


Anonymous: Awesome!
Similar questions
Math, 2 months ago