Math, asked by sanjanagarg326, 8 months ago

29. The radius and height of a right circular cone are in the ratio 4:3 and its volume is 2156 cu cm
Find the curved surface area and the total surface area of the cone.​

Answers

Answered by amansharma264
14

EXPLANATION.

=> The radius and height of a right circular cone

are in the ratio = 4:3.

=> it's volume = 2156 cu cm³

TO FIND C.S.A AND T.S.A OF CONE.

 \sf :  \implies \: let \: the \: radius \: of \: cone \:  = 4x \\  \\  \sf :  \implies \: let \: the \: height \: of \: cone \:  = 3x \\  \\  \sf :  \implies \: volume \:  = 2156 \: cu \: cm {}^{3}

  \sf :  \implies  \green{{\: volume \: of \: cone \:  =  \frac{1}{3}\pi \:  {r}^{2} h}}

 \sf :  \implies \:  \dfrac{1}{3} \times \pi \times  \: (4x) {}^{2}  \times 3x = 2156 \\  \\   \sf :  \implies \:  \frac{1}{ \cancel{3}} \times  \frac{22}{7}  \times 16 {x}^{2} \times  \cancel{3}x = 2156 \\  \\  \sf :  \implies \:  \cancel{22} \times 16 {x}^{2} \times x =  \cancel{2156} {}^{98}  \times 7 \\  \\    \sf :  \implies \: 16 {x}^{3} = 98 \times 7 \\  \\   \sf :  \implies \: x =  \frac{7}{2} = 3.5 \: cm

 \sf :  \implies \: radius \: of \: cone \:  = 4x = 4 \times 3.5 = 14 \: cm \\  \\  \sf :  \implies \: \: height \: of \: cone \:  = 3x = 3 \times 3.5 = 10.5 \: cm

 \sf :  \implies \: slant \: height \:  = l \:  =  \sqrt{ {r}^{2}  +  {h}^{2} } \\  \\   \sf :  \implies \: l =  \sqrt{ {14}^{2} +  {10.5}^{2}  }  \\  \\  \sf :  \implies \: l =  \sqrt{306.25}  = 17.5 \: cm

 \sf :  \implies \: curved \: surface \: area \: of \: cone = \pi \: rl \\  \\  \sf :  \implies \:  \frac{22}{7}  \times 14 \times 10.5 \\  \\  \sf :  \implies \: 44 \times 17.5 = \: 770 \: cm {}^{2}

Answered by Anonymous
2

Step-by-step explanation:

Let the radius be 4x and height be 3x of the right circular cone.

We have,

  • Area of the right circular cone = 2156 cm³

According to Question now,

➨ Volume of cone = ⅓ πr²h

➳ 2156 = 1/3 × 22/7 × (4x)² × (3x)

➳ 2156 = 1/3 × 22/7 × 16x² × 3x

➳ 2156 = 22/7 × 16x² × x

➳ 16x³ = 2156 × 7/22

➳ x³ = 98 × 7/16

➳ x³ = 7 × 7 × 7/2 × 2 × 2

➳ x = 7/2

x = 3.5 cm

Therefore,

  • Radius = 4x = 4(3.5) = 14 cm

  • Height = 3x = 3(3.5) = 10.5 cm

______________________

➳ Slant height (l)² = r² + h²

➳ l² = (14)² + (3.5)²

➳ l² = 196 + 110.25

➳ l² = 306.25

➳ l = √306.25

Slant Height (l) = 17.5 cm

_____________________

➳ CSA of cone = πrl

➳ CSA of cone = 22/7 × 14 × 10.5

➳ CSA of cone = 22 × 2 × 10.5

➳ CSA of cone = 44 × 10.5

CSA of cone = 770 cm²

___________________________

➳ TSA of cone = πr² + πrl

➳ TSA of cone = 22/7 × 14² + 770

➳ TSA of cone = 616 + 770

TSA of cone = 1386 cm²

Similar questions