29
Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the
following products.
a. (3.x + 2)(3x + 5)
b. (7x + 5) (7x - 1)
b. (4a2 + 1) (4a² + 3)
d. (abc - 2)(abc - 1)
Answers
Answer :-
- According two question we have to find the product of the following numbers by using the given identity
- This identity comes after the simple multiplication of numbers.
1. (3x+2)(3x+5)
- x = 3x
- a = 2
- b = 5
Using the given Identity
2. (7x+5)(7x-1)
- x = 7x
- a = 5
- b = -1
Using the given Identity
3. (4+1)(4+3)
- x =
- a = 1
- b = 3
Using the given Identity
4. (abc - 2)(abc - 1)
- x = abc
- a = -2
- b = -1
Using the given Identity
- In multiplication if the numbers are same so we can write the whole square of that number .
Ex. = (2x)(2x) =
Required to find :-
- Product of the given numbers
Mentioned condition :-
Use the Identity ;
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
Solution :-
a.
Question :-
Find the product of ( 3x + 2 ) ( 3x + 5 )
Answer :-
( 3x + 2 ) ( 3x + 5 )
This is in the form of an identity ;
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
So,
( 3x + 2 ) ( 3x + 5 ) =
=> ( 3x )² + 3x ( 2 + 5 ) + ( 2 ) ( 5 )
=> 9x² + 3x ( 7 ) + 10
=> 9x² + 21x + 10
Hence,
( 3x + 2 ) ( 3x + 5 ) = 9x² + 21x + 10
b .
Question :-
Find the product of ( 7x + 5 ) ( 7x - 1 )
Answer :-
( 7x + 5 ) ( 7x - 1 )
( 7x + 5 ) ( 7x + [ - 1 ] )
This is in the form of an identity ;
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
So,
( 7x + 5 ) ( 7x + [ - 1 ] ) =
=> ( 7x )² + 7x ( 5 + [ - 1 ] ) + ( 5 ) ( - 1 )
=> 49x² + 7x ( 5 - 1 ) + ( - 5 )
=> 49x² + 7x ( 4 ) - 5
=> 49x² + 28x - 5
Hence,
( 7x + 5 ) ( 7x + [ - 1 ] ) = 49x² + 28x - 5
c .
Question :-
Find the product of ( 4a² + 1 ) ( 4a² + 3 )
Answer :-
( 4a² + 1 ) ( 4a² + 3 )
This is in the form of an identity ;
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
( 4a² + 1 ) ( 4a² + 3 ) =
=> ( 4a² )² + 4a² ( 1 + 3 ) + ( 1 ) ( 3 )
=> 4a⁴ + 4a² ( 4 ) + 3
=> 4a⁴ + 16a² + 3
Hence,
( 4a² + 1 ) ( 4a² + 3 ) = 4a⁴ + 16a² + 3
d .
Question :-
Find the product of ( abc - 2 ) ( abc - 1 )
Answer :-
( abc - 2 ) ( abc - 1 )
( abc + [ - 2 ] ) ( abc + [ - 1 ] )
This is in the form of an identity ;
- ( x + a ) ( x + b ) = x² + x ( a + b ) + ab
So,
( abc + [ - 2 ] ) ( abc + [ - 1 ] ) =
=> ( abc )² + abc ( - 2 + [ - 1 ] ) + ( - 2 ) ( - 1 )
=> a²b²c² + abc ( - 2 - 1 ) + 2
=> a²b²c² + abc ( - 3 ) + 2
=> a²b²c² + ( - 3abc ) + 2
=> a²b²c² - 3abc + 2
Hence,
( abc - 2 ) ( abc - 1 ) = a²b²c² - 3abc + 2