Math, asked by JAYANTH9189, 1 year ago

(2a+1)whole cube +(a-1)whole cube

Answers

Answered by pinquancaro
11

The expression is (2a+1)^3+(a-1)^3=9a^3+9a^2+9a

Step-by-step explanation:

Given : Expression (2a+1)whole cube +(a-1)whole cube.

To find : Solve the expression ?

Solution :

Write the expression in algebraic form and solving it,

(2a+1)^3+(a-1)^3

Using cubic identity, (a+b)^3=a^3+b^3+3a^2b+3ab^2

(2a+1)^3+(a-1)^3=(2a)^3+(1)^3+3(2a)^2(1)+3(2a)(1)^2+(a)^3+(-1)^3+3(a)^2(-1)+3(a)(-1)^2

(2a+1)^3+(a-1)^3=8a^3+1+12a^2+6a+a^3-1-3a^2+3a

(2a+1)^3+(a-1)^3=9a^3+9a^2+9a

Therefore, the expression is (2a+1)^3+(a-1)^3=9a^3+9a^2+9a

#Learn more

A+b-3+(b-a+3)+(a-b+3)

https://brainly.in/question/5651318

Similar questions