(2a-3b+4c)^2+(2a+3b-4c)^2(29-36+40)(2a+3b-4c)
Answers
Answer:
Step by Step Solution
More Icon
STEP
1
:
Equation at the end of step 1
((2a-3b+4c)2)+(33•(2a+3b-4c)2•(2a+3b-4c))
STEP
2
:
Evaluate an expression:
2.1 Multiply (2a+3b-4c)2 by (2a+3b-4c)
The rule says : To multiply exponential expressions which have the same base, add up their exponents.
In our case, the common base is (2a+3b-4c) and the exponents are :
2
and 1 , as (2a+3b-4c) is the same number as (2a+3b-4c)1
The product is therefore, (2a+3b-4c)(2+1) = (2a+3b-4c)3
Equation at the end of step
2
:
((2a - 3b + 4c)2) + 33 • (2a + 3b - 4c)3
STEP
3
:
3.1 Evaluate : (2a-3b+4c)2 = 4a2-12ab+16ac+9b2-24bc+16c2
3.2 Evaluate : (2a+3b-4c)3 = 8a3+36a2b-48a2c+54ab2-144abc+96ac2+27b3-108b2c+144bc2-64c3
Final result :
264a3+1188a2b-1584a2c+4a2+1782ab2-4752abc-12ab+3168ac2+16ac+891b3-3564b2c+9b2+4752bc2-24bc-2112c3+16c2