Math, asked by rajridhan4, 6 months ago

(2a – 5b) (2a + 5b) ( 4a2 + 25 b2)​

Answers

Answered by prince5132
15

GIVEN :-

  • (2a - 5b) (2a + 5b) (4a² + 25b²)

TO FIND :-

  • The value of (2a - 5b) (2a + 5b) (4a² + 25b²).

SOLUTION :-

Firstly , Let's divide the equation into two parts,

⇒ [(2a - 5b) (2a + 5b)] [(4a² + 25b²)]

Now by using identity (a + b)(a - b) = - .

⇒ [ (2a)² - (5b)² ] [ 4a² + 25b² ]

⇒ (4a² - 25b²)(4a² + 25b²)

Now by using identity (a + b)(a - b) = a² - b².

⇒ (4a²)² - (25b²)²

⇒ 16a⁴ - 625b⁴

(2a - 5b) (2a + 5b) (4a² + 25b²) = 16a - 625b.

Hence the value of (2a - 5b) (2a + 5b) (4a² + 25b²) is 16a - 625b.

Answered by Anonymous
25

\underline{\purple{\frak{ \:  \: Given:- \:  \: }}} \\  \\

  • \sf (2a-5b)(2a+5b)(4a^2 + 25b^2)

\underline{\purple{\frak{ \:  \: Find:- \:  \: }}} \\  \\

  • \sf Value\:of\:(2a-5b)(2a+5b)(4a^2 + 25b^2)

\underline{\purple{\frak{ \:  \: Solution:- \:  \: }}} \\  \\

we, have

 \dashrightarrow\sf (2a-5b)(2a+5b)(4a^2 + 25b^2) \\  \\

 \dashrightarrow\sf (2a+5b)(2a - 5b)(4a^2 + 25b^2) \\  \\

 \dashrightarrow\sf  \{(2a)^2 -  (5b)^2 \}(4a^2 + 25b^2)  \quad \bigg\lgroup\because (a+b)(a-b) = a^2 - b^2\bigg\rgroup \\  \\

 \dashrightarrow\sf  (4a^2 -  25b^2)(4a^2 + 25b^2)\\  \\

 \dashrightarrow\sf (4a^2 + 25b^2) (4a^2 -  25b^2) \\  \\

 \dashrightarrow\sf (4a^2)^2  -  (25b^2)^2\quad \bigg\lgroup\because (a+b)(a-b) = a^2 - b^2\bigg\rgroup  \\   \\

 \dashrightarrow\sf 16a^4  -  625b^4 \\   \\

 \underline{\boxed{\sf\therefore (2a-5b)(2a+5b)(4a^2+25b^2) = 16a^4 - 625b^4}}


prince5132: Amazing!!
Similar questions