Math, asked by YUSUFAHMAD786AD, 10 months ago

2a-5b=6 ,ab=3, find 8a³+125b³​

Answers

Answered by hozefancc
0

Step-by-step explanation:

Hi Yusuf

Here's your answer.

2a-5b=6, ab=3

(2a-5b)^2=4a^2+25b^2-20ab

6^2=4a^2+25b^2-20×3

36=4a^2+25b^2-60

36+60=4a^2+25b^2

96=4a^2+25b^2

96=(2a+5b)^2-2×2a×5b

96=(2a+5b)^2-20ab

96=(2a+5b)^2-20×3

96=(2a+5b)^2-60

96+60=(2a+5b)^2

156=(2a+5b)^2

√156=2a+5b

(2a+5b)^3=8a^3+125b^3+3a^2b+3ab^2

(√156)^3=8a^3+125b^3+3×2a×5b(2a+5b)

156√156=8a^3+125b^3+30ab(√156)

156√156=8a^3+125b^3+30×3(√156)

156√156=8a^3+125b^3+90√156

156√156-90√156=8a^3+125b^3

60√156=8a^3+125b^3

Hope, it helps.

Similar questions