(2a+b)² - (m-n)
Class 8
FACTORISATION (CHAPTER - 14)
helpy me
Answers
Answered by
0
Answer:
-1
Step-by-step explanation:
4 a^2 + 4 a b + b^2 - m + n
(2 a + b)^2 - (m - n)
n = -4 a^2 - 4 a b - b^2 + m
Reduce[(2 a + b)^2 - m + n == 0, {a, b, m, n}, Reals]
n == -4 a^2 - 4 a b - b^2 + m
Reduce[(2 a + b)^2 - m + n == 0, {a, b, m, n}]
{n == -4 a^2 - 4 a b - b^2 + m}
Δ_a = 16 (m - n)
Discriminant[(2 a + b)^2 - m + n, a]
d/dm((2 a + b)^2 - (m - n)) = -1
D[(2 a + b)^2 - m + n, m]
-1
integral((2 a + b)^2 - m + n) dm = m (2 a + b)^2 - m^2/2 + m n + constant
Integrate[(2 a + b)^2 - m + n, m]
(2 a + b)^2 m - m^2/2 + m n
Similar questions