Math, asked by prashmika786, 6 months ago

[ (2a²+3b²) (a²+b²)] - [ (a²-b²)]² =​

Answers

Answered by HrishikeshKokane
1

a⁴-2b⁴+7a²b²

this is your answer

Answered by mad210203
1

Given:

Given expression is [ (2a^2+3b^2) (a^2+b^2)] - [ (a^2-b^2)]^2.

To find:

We should find the value of given expression.

Solution:

To find the value of given expression, we need to simplify it.

Consider the given expression,

\Rightarrow [ (2a^2+3b^2) (a^2+b^2)] - [ (a^2-b^2)]^2

The above expression can be written as,

\Rightarrow [ (2a^2+3b^2) (a^2+b^2)] - [ (a^2-b^2)]\times [ (a^2-b^2)]

\Rightarrow [ (2a^2+3b^2) (a^2+b^2)] - (a^2-b^2)\times (a^2-b^2)

Multiply the terms,

\Rightarrow [ 2{a^2}\times a^2+2a^2\times b^2+3b^2\times a^2+3b^2\times b^2] - (a^2-b^2)\times (a^2-b^2)

Again,

\Rightarrow [ 2{a^2}\times a^2+2a^2\times b^2+3b^2\times a^2+3b^2\times b^2] - (a^2\times a^2+a^2\times(-b^2)-b^2\times a^2-b^2\times(-b^2))

Simplifying the terms,

\Rightarrow [ 2{a^2}\times a^2+2a^2\times b^2+3b^2\times a^2+3b^2\times b^2] - (a^2\times a^2-a^2\times b^2-b^2\times a^2+b^2\times b^2)

Multiplying the terms,

\Rightarrow [ 2{a^4}+2a^2 b^2+3b^2a^2+3b^4] - (a^4-a^2 b^2-b^2a^2+b^4)

\Rightarrow [ 2{a^4}+2a^2 b^2+3a^2b^2+3b^4] - (a^4-a^2 b^2-a^2b^2+b^4)

Adding the identical terms,

\Rightarrow [ 2{a^4}+5a^2 b^2+3b^4] - (a^4-2a^2 b^2+b^4)

Removing the brackets,

\Rightarrow 2{a^4}+5a^2 b^2+3b^4 - a^4+2a^2 b^2-b^4

Rearranging the terms,

\Rightarrow 2{a^4} - a^4+5a^2 b^2+2a^2 b^2+3b^4-b^4

Simplifying the above expression,

\Rightarrow {a^4}+7a^2 b^2+2b^4

The above expression cannot be simplified further because there are no common terms.

Therefore, the value of given expression is {a^4}+7a^2 b^2+2b^4.

Similar questions