Math, asked by sejalgoshwami38, 4 months ago

2b^2+b-4b+8b^2-7b^3 please solve the step by step​

Answers

Answered by amaudjaeXtheXrozier
0

Answer:Final result :

 (b + 4) • (b - 1)2

Step-by-step explanation:STEP

1

:

Equation at the end of step 1

 (((b3) +  2b2) -  7b) +  4

STEP

2

:

Checking for a perfect cube

2.1    b3+2b2-7b+4  is not a perfect cube

Trying to factor by pulling out :

2.2      Factoring:  b3+2b2-7b+4  

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -7b+4  

Group 2:  b3+2b2  

Pull out from each group separately :

Group 1:   (-7b+4) • (1) = (7b-4) • (-1)

Group 2:   (b+2) • (b2)

Bad news !! Factoring by pulling out fails :

The groups have no common factor and can not be added up to form a multiplication.

Polynomial Roots Calculator :

2.3    Find roots (zeroes) of :       F(b) = b3+2b2-7b+4

Polynomial Roots Calculator is a set of methods aimed at finding values of  b  for which   F(b)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  b  which can be expressed as the quotient of two integers

 

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  4.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,4

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        12.00      

     -2       1        -2.00        18.00      

     -4       1        -4.00        0.00      b+4  

     1       1        1.00        0.00      b-1  

     2       1        2.00        6.00      

     4       1        4.00        72.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  b3+2b2-7b+4  

can be divided by 2 different polynomials,including by  b-1  

Polynomial Long Division :

2.4    Polynomial Long Division

Dividing :  b3+2b2-7b+4  

                             ("Dividend")

By         :    b-1    ("Divisor")

dividend     b3  +  2b2  -  7b  +  4  

- divisor  * b2     b3  -  b2          

remainder         3b2  -  7b  +  4  

- divisor  * 3b1         3b2  -  3b      

remainder          -  4b  +  4  

- divisor  * -4b0          -  4b  +  4  

remainder                0

Quotient :  b2+3b-4  Remainder:  0  

Trying to factor by splitting the middle term

2.5     Factoring  b2+3b-4  

The first term is,  b2  its coefficient is  1 .

The middle term is,  +3b  its coefficient is  3 .

The last term, "the constant", is  -4  

Step-1 : Multiply the coefficient of the first term by the constant   1 • -4 = -4  

Step-2 : Find two factors of  -4  whose sum equals the coefficient of the middle term, which is   3 .

     -4    +    1    =    -3  

     -2    +    2    =    0  

     -1    +    4    =    3    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -1  and  4  

                    b2 - 1b + 4b - 4

Step-4 : Add up the first 2 terms, pulling out like factors :

                   b • (b-1)

             Add up the last 2 terms, pulling out common factors :

                   4 • (b-1)

Step-5 : Add up the four terms of step 4 :

                   (b+4)  •  (b-1)

            Which is the desired factorization

Multiplying Exponential Expressions:

2.6    Multiply  (b-1)  by  (b-1)  

The rule says : To multiply exponential expressions which have the same base, add up their exponents.

In our case, the common base is  (b-1)  and the exponents are :

         1 , as  (b-1)  is the same number as  (b-1)1  

and   1 , as  (b-1)  is the same number as  (b-1)1  

The product is therefore,  (b-1)(1+1) = (b-1)2  

Answered by vohrarishu34
0

3nhjsjskisisiisosoosisi

Similar questions