Math, asked by koreanalex573, 10 months ago

2cos^2 theta-2√2cos theta+1 = 0​

Answers

Answered by allysia
1
Taking theta = alpha (just to make the typing easy for me ^_^")

2 { \cos }^{2}  \alpha  - 2 \sqrt{2}  \cos\alpha  + 1 = 0 \\  \\

Let Cos a be equal to x,

2 {x}^{2}  - 2 \sqrt{2} x + 1 = 0 \\  \\ 2 {x}^{2}  -  \sqrt{2} x -  \sqrt{2} x + 1 = 0 \\  \\  \sqrt{2} x( \sqrt{2} x - 1) - ( \sqrt{2} x - 1) = 0 \\  \\ ( \sqrt{2} x - 1)( \sqrt{2} x - 1) = 0 \\  \\  {( \sqrt{2}x - 1) }^{2}  = 0 \\  \\


Therefore,
the root is,
 \sqrt{2} x - 1 = 0 \\  \\ x =  \frac{1}{ \sqrt{2} }  \\

which is
 \cos \alpha  =  \frac{1}{ \sqrt{2} } =  \cos \frac{\pi}{4}   \\

Therefore,
 \alpha  =  \frac{\pi}{4} \:   \\

Answered by jainishpjain
0

2 {cos}^{2} x - 2 \sqrt{2} cosx + 1 = 0 \\  2 {cos}^{2}x \:  -  \sqrt{2} cosx \:  -   \sqrt{2} cosx + 1 = 0 \\  { (\sqrt{2}cosx \:  + 1) }^{2}  = 0 \\ cosx \:  =  -  \frac{1}{ \sqrt{2} }  \\ x = 2n\pi  \frac{ + }{}  {cos}^{ - 1}  \frac{ - 1}{ \sqrt{2} }

HOPE THIS HELPS PLZ MARK AS BRAINLIEST.

Similar questions