Math, asked by farhan911, 1 month ago

(2cos^2A-1)^2÷cos^4A-sin^4=1-2sin^2A
(2 \cos(2) a - 1) {}^{2}  \div  \cos(4)  -  \sin(4)  = 1 - 2 \sin(2) a

Answers

Answered by VishnuPriya2801
137

Answer:-

We have to prove:-

    \implies \sf \:\dfrac{(2 { \cos }^{2}  A- 1) ^{2} }{ { \cos }^{4} A -  \sin ^{4} A }  = 1 - 2 { \sin }^{2} A \\  \\  \\ \implies \sf \: \frac{(2 { \cos }^{2} A - 1) ^{2}}{ { ({ \cos}^{2} A) }^{2}  -  { ({ \sin}^{2} A)}^{2} }  =  1- 2 { \sin }^{2} A

Using - = (a + b)(a - b) we get,

 \implies \sf \:  \dfrac{ { {(2 \cos }^{2} A - 1)}^{2} }{( { \cos }^{2} A +  { \sin}^{2} A)({ \cos }^{2} A  -   { \sin}^{2} A)}  = 1 - 2 { \sin}^{2} A

Using the identity sin² A + cos² A = 1 we get,

 \implies \sf \:  \dfrac{(2 { \cos}^{2} A - 1) ^{2} }{ { \cos }^{2} A -  { \sin }^{2} A }  = 1 - 2 { \sin }^{2} A

Using cos² A = 1 - sin² A in LHS we get,

 \implies \sf \:  \dfrac{( {2 (1 - \sin}^{2} A) - 1) ^{2}  }{1 -  { \sin }^{2} A -  { \sin}^{2} A}  = 1 - 2 { \sin }^{2} A \\  \\  \\ \implies \sf \:  \frac{ {(2 - 2 { \sin }^{2} A - 1) }^{2} }{(1 - 2 { \sin }^{2} A)}  = 1 - 2 { \sin }^{2} A \\  \\  \\  \implies \sf \:   \frac{(1 - 2 { \sin }^{2} A) ^{2} }{(1 - 2 { \sin }^{2} A) }    = 1 - 2 { \sin }^{2} A \\  \\  \\ \implies \sf \:  \frac{(1 - 2 { \sin }^{2} A)(1 - 2 { \sin }^{2} A)  }{(1 - 2 { \sin }^{2} A) }  = 1 - 2 { \sin }^{2} A \\  \\  \\ \implies \sf \: 1 - 2 { \sin }^{2} A = 1 - 2 { \sin }^{2} A

Hence, Proved.

_________________________________

Simple Method:-

  • cos 2A = 2 cos² A - 1

  • cos 2A = cos² A - sin² A = cos⁴ A - sin⁴ A

  • cos 2A = 1 - 2sin² A.

So,

⟹ (cos 2A)² / cos 2A = cos 2A

cos 2A = cos 2A

Hence, Proved.


Anonymous: Awesome!
VishnuPriya2801: Thank you!! :)
Answered by Anonymous
119

Answer:

Correct Question :-

\longmapsto \: \sf\dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A} =\: 1 - 2sin^2A

Solution :-

Taking LHS :

\dashrightarrow \sf \dfrac{{(2cos^2A - 1)}^{2}}{cos^4A - sin^4A}

\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{{(cos^2A)}^{2} - {(sin^2A)}^{2}}

\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A + sin^2A)(cos^2A - sin^2A)} \: \bigg\lgroup a^2 - b^2 =\: (a + b)(a - b)\bigg \rgroup\\

\implies \sf \dfrac{{(2cos^2A - 1)}^{2}}{(cos^2A - sin^2A)}

\implies \sf \dfrac{\{2(1 - sin^2A)- 1\}^2}{1 - sin^2A - sin^2A} \: \bigg\lgroup cos^2A =\: 1 - sin^2A\bigg \rgroup\\

\implies \sf \dfrac{(2 - 2sin^2A - 1)^2}{1 - 2sin^2A}

\implies \sf \dfrac{(2 - 1 - 2sin^2A)^2}{1 - 2sin^2A}

\implies \sf \dfrac{(1 - 2sin^2A)^2}{1 - 2sin^2A}

\implies \sf \dfrac{\cancel{(1 - 2sin^2A)}(1 - 2sin^2A)}{\cancel{1 - 2sin^2A}}

\implies \sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{LHS}\bigg \rgroup

Again, taking RHS :

\dashrightarrow \sf 1 - 2sin^2A

\implies\sf\bold{\red{1 - 2sin^2A}} \: \: \bigg\lgroup \bold{RHS}\bigg \rgroup

{\large{\pink{\bold{\underline{\leadsto\: LHS =\: RHS}}}}}

\clubsuit \: \sf\boxed{\bold{\green{Hence, Proved}}}

\rule{150}{2}

Extra Formula Related to Trigonometry :

\diamondsuit\: \sf\bold{\purple{Trigonometry\: Identities\: :-}}

  • \sf cos^2\theta + sin^2\theta =\: 1
  • \sf 1 + tan^2\theta =\: sec^2\theta
  • \sf 1 + cot^2\theta =\: cosec^2\theta

\diamondsuit \: \sf\bold{\purple{Trigonometry \: Complementary\: Angle\: Identities\: :-}}

  • \sf sin(90 - \theta) =\: cos\theta
  • \sf cos(90 - \theta) =\: sin\theta
  • \sf tan(90 - \theta) =\: cot\theta
  • \sf cot(90 - \theta) =\: tan\theta
  • \sf sec(90 - \theta) =\: cosec\theta
  • \sf cosec(90 - \theta) =\: sec\theta
Similar questions