2cos^2x + 3sinx = 0
Answers
2cos²x + 3sinx = 0
2(1 - sin²x) + 3sinx = 0
2sin²x - 3sinx - 2 = 0
2sin²x - 4sinx + sinx - 2 = 0
2sinx(sinx - 2) + (sinx - 2) = 0
(sinx - 2)(2sinx + 1) = 0
(sinx - 2) = 0
Or,
(2sinx + 1) = 0
sinx = 2
Or,
2sinx + 1 = 0
Now,
2sinx + 1 = 0
Question :-- solve 2cos²x + 3sinx = 0
Solution :--
→ 2cos²x + 3sinx = 0
Putting cos²x = (1-sin²x) we get,
→ 2(1-sin²x) + 3sinx = 0
→ 2 - 2sin²x + 3sinx = 0
→ 2sin²x - 3sinx -2 = 0
Splitting the Middle term now,
→ 2sin²x - 4sinx + sinx - 2 = 0
→ 2sinx(sinx-2) +1(sinx -2) = 0
→ (sinx -2)(2sinx+1) = 0
Now,
if sinx-2 = 0
→ sinx = 2. That is not possible as −1 ≤ sin x ≤ 1.
So,
→ 2sinx + 1 = 0
→ 2sinx = (-1)
→ 2sinx = (-1/2)
→ 2sinx = -π/6
____________________________
Now, we know that value of sin is negative in Third and Fourth Quadrant ..
So,
→ Third Quadrant = sin(π + π/6) = sin(7π/6)
→ x = 2nπ + 7π/6
And ,
→ Fourth Quadrant = sin(2π-π/6) = sin(11π/6)