Math, asked by anushreealevoor9220, 1 year ago

2Cos(Ɵ) + 4sin²(Ɵ) = 0 What is the angle?

Answers

Answered by DJstorm
0

Answer:


Step-by-step explanation:

If sinθ+2cosθ=1, then what is a proof that 2sinθ−cosθ=2?

sin ϴ + 2 cos ϴ = 1


Squaring both the sides


(sin ϴ + 2 cos ϴ) ² = (1) ²


sin² ϴ + 4 cos² ϴ + 4 sin ϴ cos ϴ = 1


because sin² ϴ = 1 - cos² ϴ & cos² ϴ=1- sin² ϴ


So replacing sin² ϴ by 1 - cos² ϴ and cos² ϴ by 1- sin² ϴ


we get


1 - cos² ϴ + 4 ( 1 - sin² ϴ ) + 4sin ϴ cos ϴ = 1


1 - cos² ϴ + 4 – 4sin² ϴ + 4 sin ϴ cos ϴ = 1


5 – 1 = cos² ϴ +4sin² ϴ - 4 sin ϴ cos ϴ


or


( cos ϴ – 2 sin ϴ ) ² = 4


cos ϴ -2sin ϴ = ± 2 or simply 2 ignoring -2

Answered by nishant3554
0
no any case not signify this case
Similar questions