2cos square theta-1÷sin theta*cos theta =cot theta -tan theta. Plzz prove it
Answers
Answered by
57
LHS:
cot theta - tan theta
cos theta/sin theta-sin theta/cos theta
cos²theta-sin²theta/sin theta * cos theta
cos²theta-1(1-sin²theta) /sin theta * cos theta
cos²theta-1+cos²theta/sin theta*cos theta
2cos²theta-1/sin theta*cos theta
Hence Proved
cot theta - tan theta
cos theta/sin theta-sin theta/cos theta
cos²theta-sin²theta/sin theta * cos theta
cos²theta-1(1-sin²theta) /sin theta * cos theta
cos²theta-1+cos²theta/sin theta*cos theta
2cos²theta-1/sin theta*cos theta
Hence Proved
Answered by
15
(2cos²θ - 1)/(sinθcosθ) = cotθ - tanθ
LHS
=(2cos²θ - cos²θ - sin²θ)/(sinθcosθ)
∵ 1 = cos²θ + sin²θ
(cos²θ - sin²θ)/ sinθcosθ
Dividing throughout by cos²θ
= (1 - tan²θ)/tanθ
= cot θ - tanθ
= RHS
Hence Proved
Similar questions