2Cos(x+y)=2Sin(x-y)=1
find Sin^2x+Cos^2x
Answers
Answer:
2(cosx+2cos
2(cosx+2cos 2
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=0
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 2
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=−
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<π
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<πcosx=−1=cosπ ∴cosx=1/2=cos(π/3)
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<πcosx=−1=cosπ ∴cosx=1/2=cos(π/3)∴x=2nπ±π/3
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<πcosx=−1=cosπ ∴cosx=1/2=cos(π/3)∴x=2nπ±π/3∴x=π/3, −π/3
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<πcosx=−1=cosπ ∴cosx=1/2=cos(π/3)∴x=2nπ±π/3∴x=π/3, −π/3Hence the values of x s.t. −π≤x≤π are
2(cosx+2cos 2 x−1)+2sinxcosx.(1+2cosx)−2sinx=0or 2(2cos 2 x+cosx−1)+2sinx(2cos 2 x+cosx−1)=02(1+sinx)(cosx+1)(2cosx−1)=0We have to determine values of x s.t. −π≤x≤π1+sinx=0 ∴sinx=−1∴x=2nπ+ 23π ∴x=− 2π ,for n=−1 ∵−π≤x<πcosx=−1=cosπ ∴cosx=1/2=cos(π/3)∴x=2nπ±π/3∴x=π/3, −π/3Hence the values of x s.t. −π≤x≤π are−π,−π/2,−π/3,π/3,π.
Step-by-step explanation:
PLEASE MAKE ME A BRAINLIST ANSWER.