Physics, asked by patelhemaxi, 1 day ago

2cos²0 + 5sin³0 +2 differenction and intergtion​

Answers

Answered by ranjeetcarpet
4

Answer:

function to be differentiable at any point x = a, in its domain, it must be continuous at that particular point but vice-versa is necessarily not always true. The domain of f’(x) is defined by the existence of its limits.

If y = f(x) is a function in x, then the derivative of f(x) is given as dy/dx. This is known as the derivative of y with respect to x.

Also, the derivative of a function f(x) at x = a, is given by:

Answered by TrustedAnswerer19
10

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \bf \to \: let \\  \\  \rm \: f(\theta) = 2cos {}^{2} \theta + 5sin {}^{2}\theta + 2 \\  \\ \rm = 2 {cos}^{2}  \theta + 5(1 -  {cos}^{2}  \theta) + 2 \\  \\  \rm = 2 {cos}^{2} \theta + 5 - 5cos {}^{2}\theta + 2 \\  \\  \rm = 7 - 3 {cos}^{2} \theta \:  \\   \\   \therefore \rm \: f(\theta) = 7 - 3 {cos}^{2} \theta \\  \\ \\  \blue{ \underline{\sf \: we \: have \: to \: find \:  :  }} \\  \\ \sf \hookrightarrow \:  differentiate \: the \: function \:  =  \frac{df(\theta)}{d\theta \: }  \\  \\  \\ \blue{ \sf \hookrightarrow \:  integrate \: the \: function =  \displaystyle \int  \rm \: f(\theta) \: d\theta \: } \end{array}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \red{ \underline{ \sf \: solution \:  : }}

{\orange{ \boxed{ \boxed{ \begin{array}{cc}  \underline{\bf \: differentiation}   \\  \\   \rm\frac{df(\theta)}{d\theta}  =  \frac{d}{d\theta} (7 - 3 {cos}^{2} \theta  ) \\  \\ {\pink{ { \boxed{ \begin{array}{cc} \sf \: we \: know \: that :  \\  \\ \sf \hookrightarrow \:   \frac{d}{dx}(u \pm \: v) =  \frac{d \: u}{dx}    \pm \:  \frac{dv}{dx} \\  \\ \sf \hookrightarrow \:   \frac{d}{dx}(constant) = 0 \\  \\ \sf \hookrightarrow \:   \frac{d}{dx}   cos \: x =  - sin \: x \\  \\ \sf \hookrightarrow \:   \frac{d}{dx} {x}^{n}  = n {x}^{n - 1}   \end{array}}}}}  \\  \\  \rm =  \frac{d}{d\theta}7 -  \frac{d}{d\theta}  3 {cos}^{2}\theta \\  \\  \rm = 0 - 3 \frac{ d }{d\theta}  {(cos \: \theta)}^{2}  \\  \\  \rm =  - 3 \times 2cos \: \theta  \: \frac{d}{d\theta} \: cos \: \theta \\  \\  \rm =  - 3 \times 2cos \: \theta( - sin \: \theta) \\  \\  \rm  = 3 \times 2sin\theta \: cos\theta \\  \\  \rm = 3sin2\theta \\  \\  \pink{ \{  \because\sf \: 2sinx \: cos \: x = sin2x \}}  \\  \\  \\   \boxed{\therefore \rm \:  \frac{df(\theta)}{dx} = 3 \: sin2\theta} \end{array}}}}}

{\blue{ \boxed{ \boxed{ \begin{array}{cc}  \underline{ \bf \: integration} \\  \\  \bf \: let \\  \\  \rm \: I = \displaystyle \int \:  \rm \: f(\theta) \: d\theta \\  \\  \rm = \displaystyle \int  \rm \:(7 - 3cos {}^{2}  \theta) \:  \: d\theta \\  \\  \small{{\pink{ { \boxed{ \begin{array}{cc}  \sf \: we \: know \: that :  \\  \\ \sf \hookrightarrow \: \displaystyle \int \:  \rm \: (u \pm \: v) \: dx = \displaystyle \int \:  \rm \: u \: dx \pm \: \displaystyle \int \:  \rm \: v \: dx \\  \\ \sf \hookrightarrow \:  \displaystyle \int  \rm \:cos \: x \: dx = sin \: x + c \\  \\ \sf \hookrightarrow \:  \displaystyle \int  \rm \:k \: dx = kx + c  \end{array}}}}} }\\  \\  \rm = \displaystyle \int  \rm \:7 \: d\theta - 3\displaystyle \int \:  \rm \:  {cos}^{2}  \theta \: d\theta  \\  \\  \rm = 7\theta -3\displaystyle \int  \rm \: \frac{1}{2}  \times 2cos {}^{2} \theta \: d\theta \\  \\  \rm = 7\theta -  \frac{3}{2} \displaystyle \int \:  \rm \: (1 + cos2\theta) \: d\theta \\  \\  \rm = 7\theta -  \frac{3}{2}  \{\displaystyle \int \:  \rm \: 1. \: d\theta + \displaystyle \int \:  \rm \: cos2\theta \: d\theta \} \\  \\  \rm = 7\theta -  \frac{3}{2}  \{\theta +  \frac{sin2\theta}{2}  \} + c \\  \\   \rm = 7\theta -  \frac{3\theta}{2} -  \frac{3 \: sin2\theta}{4}  + c \\  \\  \rm =  \frac{11\theta}{2}  -\frac{3sin2\theta}{4}  + c \\  \\  \rm \:  = answer \end{array}}}}}

Similar questions