Math, asked by sudiptochandra20, 10 months ago

2cos²x=7sin x-2 then x=?

Answers

Answered by rishu6845
4

Answer---->

principal \: value \: of \: x

x =  \dfrac{\pi}{6} and \:  \dfrac{\ \: 5\pi}{6}

general \: value \: of \: x

x = n\pi +  { (- 1)}^{n} \dfrac{\pi}{6}

Step-by-step explanation:

Given---->

2 { \cos }^{2} x = 7 \:  \sin \: x   - 2

To find ---->

value \: of \: x

Concept used ---->

1)

1 -  { \sin }^{2}x =  { \cos }^{2}x

2)

general \: value \: of \:  \sin

n\pi +  { (- 1)}^{n}  \alpha

3)

value \: of \:  sinx \: is \: greater \: than \: equal \: to \: ( - 1) \: and \: less \: than \: equal \: to \: 1

 - 1 \leqslant  \sin \: x  \leqslant 1

Solution----> ATQ,

2 \cos^{2}x = 7 \sin \: x \:  - 2

=> 2 \ \: ( \: 1 -  { \sin \: }^{2}x \: ) = 7 \sin \: x \:  - 2

=> 2 - 2  \: { \sin }^{2}x \:  - \: 7 \sin \: x  + 2 = 0

=>  - 2 \sin ^{2}x \:  - 7 \sin \: x   +  4 \:  = 0

=> 2 \sin^{2}x \:   + 7  \sin \: x \:  - 4 = 0

=> 2 \sin^{2}x + 8 \sin \: x  - \sin \: x - 4 = 0

=> 2 \sin \: x( \:  \sin \: x \:  + 4 \: ) - 1( \:  \sin \: x \:  + 4 \: )  = 0

=> ( \:  \sin \: x \:  + 4 \: ) \: ( \: 2 \sin \: x \:  - 1 \: ) = 0

if

 \sin \: x \:  + 4 = 0

=>  \sin \: x \:  =  - 4 \:  \: ( \: impossible \: )

because \:  \sin \: x \: can \: not \: be \: less \: than \: ( \:  - 1 \: ) \: so \: it \: is \: impossible

if

2 \:  \sin \: x \:  - 1 = 0

=> 2 \sin \: x \:  = 1

=>  \sin \: x \:  =  \frac{1}{2}

principal \: value \: of \: x \: is

x \:  =  \dfrac{\pi}{6} and \:  \dfrac{5\pi}{6}

general \: value \: of \: x

 \sin \: x \:  =  \frac{1}{2}

=>  \sin \: x \:  =  \frac{\pi}{6}

=> sinx = sin \: ( \: n\pi \:  + ( - 1) ^{n} \:  \frac{\pi}{6} \: )

=> x = n\pi \:  + ( - 1 \: ) ^{n}  \frac{\pi}{6}

Similar questions