(2cosA+1)(2cosA-1)(2cos2A-1)(2cos4A-1)=2cos8A+1 prove that
Answers
Answered by
21
Proof:
L.H.S. = (2 cosA + 1) (2 cosA - 1) (2 cos2A - 1) (2 cos4A - 1)
= {(2 cosA + 1) (2 cosA - 1)} (2 cos2A - 1) (2 cos4A - 1)
= (4 cos²A - 1) (2 cos2A - 1) (2 cos4A - 1)
= {2 (2 cos²A - 1) + 1} (2 cos2A - 1) (2 cos4A - 1)
= (2 cos2A + 1) (2 cos2A - 1) (2 cos4A - 1)
= {(2 cos2A + 1) (2 cos2A - 1)} (2 cos4A - 1)
= (4 cos²2A - 1) (2 cos4A - 1)
= {2 (2 cos²2A - 1) + 1} (2 cos4A - 1)
= (2 cos4A + 1) (2 cos4A - 1)
= 4 cos²4A - 1
= 2 (2 cos²4A - 1) + 1
= 2 cos8A + 1 = R.H.S.
Hence, proved.
Trigonometric Rules:
- 2 cos²A - 1 = cos2A
- 2 cos²2A - 1 = cos4A
- 2 cos²4A - 1 = cos8A
Answered by
9
I hope you will like it..
Answer:
Attachments:
Similar questions