Math, asked by crexgaming2003, 6 months ago

2cosA = √2+√2(1+cos4A)​

Attachments:

Answers

Answered by anonymousgirl1729
2

Answer:

click on the photo to view full answer

Attachments:
Answered by Anonymous
3

Solution :-

We Know :-

• Cos(2x) = 2 Cos²(x) - 1

Now :-

  \sf{= \sqrt{2 + \sqrt{2 ( 1 + \cos \: 4A)}}}

 \sf{ = \sqrt{2 + \sqrt{ 2 ( 1 + 2cos^2 (2A) - 1)}}}

 \sf{ = \sqrt{2 + \sqrt{2(2cos^2(2A))}}}

 \sf{ = \sqrt{2 + \sqrt{4cos^2(2A))}}}

 \sf{= \sqrt{2 + 2cos(2A) }}

 \sf { = \sqrt{ 2( 1 + cos(2A))}}

 \sf{ = \sqrt{2( 1 + 2cos^2(A) - 1)}}

 \sf{= \sqrt{2(2cos^2(A))}}

 \sf{ = \sqrt{4cos^2(A)}}

\boxed{ \sf{ = 2cos(A)}}

Similar questions